NASA Awards NOAA’s QuickSounder Spacecraft Contract

NASA Awards NOAA’s QuickSounder Spacecraft Contract

NASA meatball logo
NASA

NASA, on behalf of NOAA (National Oceanic and Atmospheric Administration), has awarded a delivery order under the Rapid Spacecraft Acquisition IV (Rapid-IV) contract to Southwest Research Institute of San Antonio for the QuickSounder spacecraft.

The firm-fixed-price delivery order covers all phases of QuickSounder’s operations to include spacecraft development, integration of NOAA’s Advanced Technology Microwave Sounder Engineering Development Unit, spacecraft shipment, supporting launch operations, three years of mission operations, and eventual spacecraft decommissioning.

The total value of the order is $54,973,400 with the period of performance beginning Wednesday, Oct. 25, and scheduled to run until May 2029.

QuickSounder is the first project in NOAA’s Near Earth Orbit Network. As a pathfinder mission, QuickSounder will support NOAA’s next generation satellite architecture for its future low Earth orbit program, which will provide mission-critical data to support NOAA’s National Weather Service and the nation’s weather industry.

Rapid IV contracts serve as a fast and flexible means for the government to acquire spacecraft and related components, equipment, and services in support of NASA missions and/or other federal government agencies. The spacecraft designs, related items, and services may be tailored, as needed, to meet the unique needs of each mission.

The Near Earth Orbit Network is a collaborative mission between NASA and NOAA. NASA will manage the development and launch of the satellites for NOAA, which will operate them and deliver data to users worldwide. NOAA, as the mission lead, provides funding, technical requirements, and post-launch operations. NASA and NOAA will work with commercial partners to design and build the network’s spacecraft and instruments.      

For information about NASA and agency programs, visit:

https://www.nasa.gov

-end-

Abbey Donaldson
Headquarters, Washington
202-358-1600
abbey.a.donaldson@nasa.gov

Jeremy Eggers
Goddard Space Flight Center, Greenbelt, Maryland
757-824-2958
jeremy.l.eggers@nasa.gov

Share

Details

Last Updated

Oct 23, 2023

Related Terms

Powered by WPeMatico

Get The Details…
Roxana Bardan

Dr. Natasha Schatzman Receives the Vertical Flight Society (VFS) 2023 Francois-Xavier Bagnoud Award 

Dr. Natasha Schatzman Receives the Vertical Flight Society (VFS) 2023 Francois-Xavier Bagnoud Award 

1 min read

Dr. Natasha Schatzman Receives the Vertical Flight Society (VFS) 2023 Francois-Xavier Bagnoud Award 

Portrait of female aerospace research engineer at NASA Ames Research Center Dr. Natasha Schatzman.
Dr. Natasha Schatzman, NASA Ames Research Center
NASA / Dominic Hart

In May 2023, Dr. Natasha Schatzman received the Vertical Flight Society Francois-Xavier Bagnoud Award for her vertical flight research at NASA Ames Research Center.  This annual award is given to a VFS member who is thirty-five years old or younger for outstanding contributions to vertical flight technology.  The award announcement notes that Dr. Schatzman “was recognized for outstanding vertical lift research (internationally recognized in rotorcraft acoustics and full-scale wind tunnel acoustics testing), for extensive contributions to the VFS technical community and local VFS San Francisco Bay Area Chapter, and for outstanding mentorship in the rotorcraft field.”  She began her work at NASA Ames Research Center in 2008 as an intern, and she now oversees various acoustic experimental and computational key aspects of Revolutionary Vertical Life Technology (RVLT) Project, which includes leading rotor acoustic tests in the 40-foot by 80-Foot Wind Tunnel at NASA Ames Research Center.  Dr. Schatzman holds a Ph.D. in Aeronautical and Astronautical Engineering from the Georgia Institute of Technology. 

More information on this award is at:https://gallery.vtol.org/image/APwYX/?fbclid=IwAR0vRoQybkYvWeLGzOuqRhmw7TKuYXD1-EZSYKtgijvxfhzmwP58WIlSzBY

About the Author

Suzanne Cisneros

Suzanne Cisneros

Management & Program Analyst

Share

Details

Last Updated

Oct 23, 2023

Related Terms

Powered by WPeMatico

Get The Details…
Suzanne Cisneros

NASA’s Dragonfly Tunnel Visions

NASA’s Dragonfly Tunnel Visions

5 min read

NASA’s Dragonfly Tunnel Visions

Dragonfly Team Utilizes Unique NASA Facilities to Shape Its Innovative Titan-bound Rotorcraft 

Dragonfly team members review the half-scale lander model
Dragonfly team members review the half-scale lander model after it underwent wind tunnel testing at NASA Langley Research Center in Hampton, Virginia. Pictured are (from left) Art Azarbarzin, Juan Cruz, Wayne Dellinger, Zibi Turtle, Chuck Hebert, Ken Hibbard, Bernadine Juliano and Bruce Owens.
Johns Hopkins APL/Ed Whitman

With its dense atmosphere and low gravity, Saturn’s moon Titan is a great place to fly. 

But well before NASA’s Dragonfly rotorcraft lander soars through Titan’s skies, researchers on Earth – led by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland – are making sure their designs and models for the nuclear-powered, car-sized drone will work in a truly unique environment.

Artist’s impression of the Dragonfly rotorcraft lander on the surface of Titan, Saturn’s largest moon
Artist’s impression of the Dragonfly rotorcraft lander on the surface of Titan, Saturn’s largest moon and a major target in NASA’s quest to assess habitability and search for potential signs of life beyond Earth on worlds across the solar system.
NASA/Johns Hopkins APL/Steve Gribben

Dragonfly, NASA’s only mission to the surface of another ocean world, is designed to investigate the complex chemistry that is the precursor to life. The vehicle, which APL will build and operate, will be equipped with cameras, sensors and samplers to examine swaths of Titan known to contain organic materials that may, at some point in Titan’s complex history, have come in contact with liquid water beneath the organic-rich, icy surface. 

To transport those science instruments across the moon, Dragonfly’s four pairs of coaxial rotors (meaning one rotor is stacked above the other) will need to slice through Titan’s dense, nitrogen-rich atmosphere. Four times in the past three years, the mission team has headed to Virginia to test its flight systems in one-of-a-kind facilities at NASA’s Langley Research Center in Hampton, Virginia. 

Mission engineers have conducted two test campaigns in NASA Langley’s 14-by-22-foot Subsonic Tunnel, and two in the 16-foot Transonic Dynamics Tunnel (TDT).  They use the Subsonic Tunnel to validate computational fluid dynamics models and data gathered from integrated test platforms – terrestrial drones outfitted with Dragonfly-designed flight electronics. They use the variable-density heavy gas capabilities of the TDT to validate its models under simulated Titan atmospheric conditions — one aerodynamic stability test of the aeroshell that is used to deliver the Lander to a release point above Titan’s surface and one to model the Lander’s rotors aerodynamics. 

“All of these tests feed into our Dragonfly Titan simulations and performance predictions,” said Ken Hibbard, Dragonfly mission systems engineer at APL. 

On its latest trip to NASA Langley, in June, the team set up a half-scale Dragonfly lander model, complete with eight rotors, in the 14-by-22 Subsonic Tunnel. Test lead Bernadine Juliano of APL said the campaign focused on two flight configurations: Dragonfly’s descent and transition to powered flight upon arrival at Titan, and forward flight over Titan’s surface. 

“We tested conditions across the expected flight envelope at a variety of wind speeds, rotor speeds, and flight angles to assess the aerodynamic performance of the vehicle,” she said. “We completed more than 700 total runs, encompassing over 4,000 individual data points. All test objectives were successfully accomplished and the data will help increase confidence in our simulation models on Earth before extrapolating to Titan conditions.”

APL engineers are analyzing the 14-by-22 test data with mission flight team partners at the University of Central Florida, Penn State University, Lockheed Martin Sikorsky, NASA Langley and NASA Ames Research Center in Silicon Valley, California. Rick Heisler, the Dragonfly wind tunnel test lead from APL who heads the TDT test campaigns, said each trip to NASA Langley has given the team a chance to hone its technical models and designs and, specifically in the TDT, gain a better idea of how Dragonfly’s rotors will perform in Titan’s exotic atmosphere.  

“The heavy gas environment in the TDT has a density three-and-a-half times higher than air while operating at sea level ambient pressure and temperature,” Heisler said, “This allows the rotors to operate at near-Titan conditions and better replicate the lift and dynamic loading the actual lander will experience. The data we acquire are used to validate predictions of the lander aerodynamics, aero-structural performance and rotor fatigue life in the harsh cryogenic environment on Titan.”

“With Dragonfly, we’re turning science fiction into exploration fact,” Hibbard said. “The mission is coming together piece by piece, and we’re excited for every next step toward sending this revolutionary rotorcraft across the skies and surface of Titan.” 

Part of NASA’s New Frontiers Program, Dragonfly is scheduled to launch no earlier than 2027 and arrive at Titan in the mid-2030s. Principal Investigator Elizabeth Turtle of APL leads a mission team that includes engineers, scientists and specialists from APL as well as NASA’s Goddard Space Flight Center in Greenbelt, Maryland; Lockheed Martin Space in Littleton, Colorado; NASA’s Ames Research Center in Silicon Valley, California; NASA’s Langley Research Center in Hampton, Virginia; Penn State University in State College, Pennsylvania; University of Central Florida in Orlando, Florida; Lockheed Martin Sikorsky in Stratford, Connecticut; Malin Space Science Systems in San Diego; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory in Southern California;  CNES (Centre National d’Etudes Spatiales) in Paris; the German Aerospace Center (DLR) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo. 

Learn more at www.nasa.gov/dragonfly

Powered by WPeMatico

Get The Details…
Tricia Talbert

NASA Test Piloting Legends Reunite

NASA Test Piloting Legends Reunite

1 min read

NASA Test Piloting Legends Reunite

Nils Larson, X59 pilot and Astronaut Victor Glover walking side-by-side.
Former flight test instructor and current NASA test pilot Nils Larson reunited with former student and current astronaut Victor Glover on Oct. 21 during an open house at NASA’s Langley Research Center in Hampton, Virginia.
NASA / Dave Bowman

Nils Larson, aerospace engineer and test pilot for NASA’s X-59 aircraft, met up with his former student, Artemis II astronaut Victor Glover, on Saturday, Oct. 21 during an open house held at NASA’s Langley Research Center in Hampton, Virginia. The pilots originally met more than two decades ago when Larson was an instructor at the U.S. Air Force Test Pilot School. Larson trained students – including Glover – using the T-38 aircraft.  

“I always knew Victor would go far. It’s cool to think that far means the Moon,” said Larson, whose current test piloting work is critical to NASA’s Quesst mission. “I was excited to see him picked up as an astronaut, then get to fly to the International Space Station, and now he gets to go to the Moon as part of Artemis II. The sky’s not the limit anymore!” 

Nearly 40,000 people attended the NASA Langley open house. Larson and Glover reunited at Langley’s hangar where other NASA legends, such as astronauts Neil Armstrong and Alan Shepard, trained on its historic Rendezvous Docking Simulator. The simulator remains a permanent fixture at the hangar. 

Powered by WPeMatico

Get The Details…
Lillian Gipson

New York Students to Hear from Astronaut Aboard Space Station

New York Students to Hear from Astronaut Aboard Space Station

NASA astronaut and Expedition 70 Flight Engineer Jasmin Moghbeli works with the Advanced Resistive Exercise Device, or ARED, removing and replacing cables. The device uses adjustable resistive mechanisms to provide crew members a weight load while exercising to maintain muscle strength and mass in microgravity.

Students from Baldwin Union Free School District in Baldwin, New York, will have an opportunity this week to hear from an astronaut aboard the International Space Station. The Earth-to-space call will air live at 11 a.m. EDT Friday, Oct. 27, on NASA Television, the NASA app, and the agency’s website.

NASA astronaut Jasmin Moghbeli, an alumnus of Baldwin Union Free School District, will answer prerecorded questions from students.

Media interested in covering the event should RSVP no later than 5 p.m. on Wednesday, Oct. 25, to Mary Furcht at furchtm@baldwinschools.org or 516-434-6012.

These educational opportunities for students to speak with astronauts living and working on the space station are provided by the Office of STEM Engagement’s Next Gen STEM project.

For almost 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing the skills needed to explore farther from Earth. Astronauts living in space aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through the Space Communications and Navigation (SCaN) Near Space Network.

Important research and technology investigations taking place aboard the International Space Station benefits people on Earth and lays the groundwork for future exploration.

As part of Artemis, NASA will send astronauts to the Moon to prepare for future human exploration of Mars. Inspiring the next generation of explorers – the Artemis Generation – ensures America will continue to lead in space exploration and discovery.

See videos and lesson plans highlighting research on the International Space Station at:

https://www.nasa.gov/stemonstation

-end-

Katherine Brown
Headquarters, Washington
202-358-1288
katherine.m.brown@nasa.gov

Sandra Jones 
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Share

Details

Last Updated

Oct 23, 2023

Powered by WPeMatico

Get The Details…
Abbey A. Donaldson