Progress Continues Toward NASA’s Boeing Crew Flight Test to Station

Progress Continues Toward NASA’s Boeing Crew Flight Test to Station

NASA and Boeing are working to complete the agency’s verification and validation activities ahead of Starliner’s first flight with astronauts to the International Space Station. While Boeing is targeting March to have the spacecraft ready for flight, teams decided during a launch manifest evaluation that a launch in April will better accommodate upcoming crew rotations and cargo resupply missions this spring.

Inside Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Jan. 19, 2023, the Starliner team works to finalize the mate of the crew module and new service module for NASA's Boeing Crew Flight Test.
The Starliner team works to finalize the mate of the crew module and new service module for NASA’s Boeing Crew Flight Test that will take NASA astronauts Barry “Butch” Wilmore and Sunita “Suni” Williams to and from the International Space Station.
Boeing/John Grant

Once the spacecraft meets the agency’s safety requirements, NASA’s Boeing Starliner Crew Flight Test (CFT) will see astronauts Butch Wilmore and Suni Williams perform the first crewed mission of the spacecraft designed to take astronauts to and from the orbital laboratory.

Ahead of CFT, Boeing has completed P213 tape removal in the upper dome of the Starliner crew compartment and work is underway to remove or remediate the tape in the lower dome of the spacecraft. These hardware remediation efforts inside the Starliner production facility at NASA Kennedy are expected to be completed during the next several weeks. After the P213 tape remediation efforts conclude, engineers will conduct final assessments to ensure acceptable risk of any remaining tape.

A set of parachutes is on track to be delivered and installed on the CFT spacecraft by the end of this year to support the current target launch date. Separately, the team also is planning a drop test of Starliner’s updated drogue and main parachutes. The parachutes will incorporate a planned strengthening of main canopy suspension lines and the recent design of the drogue and main parachute soft-link joints, which will increase the safety factor for the system. The drop test is planned for early 2024 based on the current parachute delivery schedule.

Boeing and NASA also are planning modifications to the active thermal control system valves to improve long-term functionality following a radiator bypass valve issue discovered during ground operations earlier this year. As discussed during a Starliner media teleconference in June, teams have modified the spacecraft hardware and identified forward work to prevent a similar issue in the future. Options include a system purge to prevent stiction, component upgrades and operational mitigations.

Additionally, about 98% of the certification products required for the flight test are complete, and NASA and Boeing anticipate closure on remaining CFT certification products early next year. Meanwhile, NASA and Boeing have made significant progress on requirement closures related to manual crew control of the spacecraft and abort system analysis.

The latest version of Starliner’s CFT flight software completed qualification testing and is undergoing standard hardware and software integration testing inside Boeing’s Avionics and Software Integration Lab. Starliner’s crew and service modules remain mated and await continuation of standard preflight processing.

The United Launch Alliance Atlas V rocket also is in Florida at Cape Canaveral Space Force Station awaiting integration with the spacecraft.

The NASA astronauts who will fly aboard CFT continue to train for their roughly eight-day mission to the orbiting laboratory, which includes working with operations and mission support teams to participate in various simulations across all phases of flight.

Starliner completed two uncrewed flight tests, including Orbital Flight Test-2, which docked to the space station on May 21, 2022, following a launch two days prior from Kennedy. The spacecraft remained docked to space station for four days before successfully landing at the White Sands Missile Range in New Mexico.

Follow NASA’s commercial crew blog or CFT mission blog for the latest information on progress. Details about NASA’s Commercial Crew Program can be found by following the commercial crew blog@commercial_crew on X, and commercial crew on Facebook.

Powered by WPeMatico

Get The Details…
Danielle Sempsrott

Aviones de movilidad aérea avanzada: un viaje suave en el futuro

Aviones de movilidad aérea avanzada: un viaje suave en el futuro

4 min read

Aviones de movilidad aérea avanzada: un viaje suave en el futuro

Electrical vertical takeoff and landing aircraft (eVTOLs), like the one shown in this concept art, could be a crucial part of the next generation of air transportation.
Los aviones eléctricos de despegue y aterrizaje vertical, como el que se muestra en este diseño conceptual, podrían ser una parte fundamental de la próxima generación de transporte aéreo. Para crear un mercado realmente viable, los diseñadores tendrán que crear una experiencia cómoda para el pasajero. La misión de movilidad aérea avanzada de la NASA está investigando la calidad del viaje para comprender mejor cómo se deben diseñar estas aeronaves.
Gráficos de la NASA/Kyle Jenkins

Lee esta historia en inglés aquí.

Hoy en día, los pasajeros de avión esperan un viaje tranquilo con pocas turbulencias. Aunque las turbulencias no siempre pueden evitarse, las consideraciones y diseños de los aviones limitan lo que siente el pasajero.

Los aviones eléctricos de despegue y aterrizaje vertical (eVTOL por sus siglas en inglés) podrían ser una parte fundamental de la próxima generación de transporte aéreo, pero para crear un mercado viable, los diseñadores tendrán que crear una experiencia cómoda para el pasajero.

La misión de Movilidad Aérea Avanzada (AAM por sus siglas en inglés) de la NASA está investigando la calidad de viajes para comprender mejor cómo deben diseñarse estas aeronaves para una experiencia ideal del pasajero. La investigación de la NASA proporciona orientación de diseño a los fabricantes de la industria para garantizar que los pasajeros disfruten de un viaje tranquilo y seguro.

“Nosotros creemos que las aeronaves de AAM deberán tener un bajo nivel de ruido en la cabina, una baja vibración de los rotores y ser más resistentes a las turbulencias”, dijo Carlos Malpica, jefe técnico de dinámica y control de vuelo del proyecto de tecnología de elevación vertical revolucionaria (RVLT por sus siglas en inglés) de la NASA. “Tendrán que ser volados de una manera predecible, repetible y no agresiva que no resulte en aceleraciones o rotaciones repentinas de la aeronave”.

La misión AAM de la NASA está investigando la respuesta fisiológica humana a los estímulos de movimiento, vibración y ruido que el equipo espera que experimenten los pasajeros en los aviones eVTOL.

El año pasado, el proyecto RVLT llevó un estudio en el Simulador de Movimiento Vertical del Centro de Investigación Ames de la NASA en Silicon Valley (California). Voluntarios que se hicieron pasar por pasajeros experimentaron dos vuelos de simulador de corta duración en diferentes niveles de turbulencia. Un viaje fue tranquilo y el otro agitado. El estudio examinó la susceptibilidad al mareo en estas condiciones en aviones eVTOL. La NASA está planeando otros estudios de este tipo para mejor comprender las consecuencias para los pasajeros.

La misión AAM incluye varios proyectos centrados en distintas áreas para ayudar a que los aviones eVTOL y otras aeronaves innovadoras vuelen por los cielos. Esto incluye trabajos sobre automatización, ruido, vertipuertos y diseño de vehículos, así como integración del espacio aéreo para mantener la seguridad de todos mientras vuelan. Las agencias gubernamentales, la industria y el público necesitarán combinar sus esfuerzos para construir nuevas autopistas en el cielo.

La visión de la NASA consiste en diseñar nuevos sistemas de transporte aéreo seguros, accesibles y económicos junto con socios de la industria, la comunidad, y la Administración Federal de Aviación. Estas nuevas capacidades permitirían a los pasajeros y a la carga viajar a pedido en aviones innovadores y automatizados a través de la ciudad, entre ciudades vecinas o a otros lugares a los que hoy en día se suele acceder en automóvil.

La visión de la NASA para la Movilidad Aérea Avanzada, o AAM por sus siglas en inglés, es trazar un nuevo sistema de transporte aéreo seguro, accesible y económico junto con socios de la industria, socios comunitarios y la Administración Federal de Aviación (FAA por sus siglas en inglés). La NASA está investigando cómo podría ser la calidad del viaje para los pasajeros que viajan en aviones eléctricos de despegue y aterrizaje vertical para asegurarse de que es un viaje tranquilo y seguro. En este episodio del Manual de Movilidad Aérea Avanzada de la NASA, analizamos cómo la NASA está especialmente cualificada para esta investigación y por qué es importante para el futuro del vuelo.

Artículo Traducido por: Elena Aguirre

Share

Details

Last Updated

Oct 26, 2023

Editor

Lillian Gipson

Contact

Jim Banke
jim.banke@nasa.gov

Powered by WPeMatico

Get The Details…
Lillian Gipson

Artemis II Water Deluge Test

Artemis II Water Deluge Test

A large amount of water cascades over the edges of the gray mobile launcher at NASA's Kennedy Space Center. Droplets of water also spray up through the air, creating a mist.
NASA / Kim Shiflett

NASA’s Exploration Ground Systems conducts a water flow test with the mobile launcher at NASA’s Kennedy Space Center’s in Florida on Oct. 24, 2023. It is the third in a series of tests to verify the overpressure protection and sound suppression system is ready for launch of the Artemis II mission.

During liftoff, 400,000 gallons of water will rush onto the pad to help protect NASA’s Space Launch System rocket, Orion spacecraft, mobile launcher, and launch pad from any overpressurization and extreme sound produced during ignition and liftoff.

Artemis II is the first crewed mission under Artemis and will test all the Orion spacecraft’s systems with astronauts aboard.

Get Artemis II updates on the blog.

Image credit: NASA/Kim Shiflett

Powered by WPeMatico

Get The Details…
Monika Luabeya

NASA Is Locating Ice on Mars With This New Map

NASA Is Locating Ice on Mars With This New Map

The map could help the agency decide where the first astronauts to the Red Planet should land. The more available water, the less missions will need to bring.

Buried ice will be a vital resource for the first people to set foot on Mars, serving as drinking water and a key ingredient for rocket fuel. But it would also be a major scientific target: Astronauts or robots could one day drill ice cores much as scientists do on Earth, uncovering the climate history of Mars and exploring potential habitats (past or present) for microbial life.

The need to look for subsurface ice arises because liquid water isn’t stable on the Martian surface: The atmosphere is so thin that water immediately vaporizes. There’s plenty of ice at the Martian poles – mostly made of water, although carbon dioxide, or dry ice, can be found as well – but those regions are too cold for astronauts (or robots) to survive for long.

That’s where the NASA-funded Subsurface Water Ice Mapping project comes in. SWIM, as it’s known, recently released its fourth set of maps – the most detailed since the project began in 2017.

Led by the Planetary Science Institute in Tucson, Arizona, and managed by NASA’s Jet Propulsion Laboratory in Southern California, SWIM pulls together data from several NASA missions, including the Mars Reconnaissance Orbiter (MRO), 2001 Mars Odyssey, and the now-inactive Mars Global Surveyor. Using a mix of data sets, scientists have identified the likeliest places to find Martian ice that could be accessed from the surface by future missions.

The ice-exposing impact crater at the center of this image is an example of what scientists look for when mapping places where future astronauts should land on Mars. It’s one of several such impacts incorporated into the latest version of a series of NASA-funded maps of subsurface water ice on the Red Planet.
NASA/JPL-Caltech/University of Arizona

Instruments on these spacecraft have detected what look like masses of subsurface frozen water along Mars’ mid-latitudes. The northern mid-latitudes are especially attractive because they have a thicker atmosphere than most other regions on the planet, making it easier to slow a descending spacecraft. The ideal astronaut landing sites would be a sweet spot at the southernmost edge of this region – far enough north for ice to be present but close enough to the equator to ensure the warmest possible temperatures for astronauts in an icy region.

“If you send humans to Mars, you want to get them as close to the equator as you can,” said Sydney Do, JPL’s SWIM project manager. “The less energy you have to expend on keeping astronauts and their supporting equipment warm, the more you have for other things they’ll need.”

Building a Better Map

Previous iterations of the map relied on lower-resolution imagers, radar, thermal mappers, and spectrometers, all of which can hint at buried ice but can’t outright confirm its presence or quantity. For this latest SWIM map, scientists relied on two higher-resolution cameras aboard MRO. Context Camera data was used to further refine the northern hemisphere maps and, for the first time, HiRISE (High-Resolution Imaging Science Experiment) data was incorporated to provide the most detailed perspective of the ice’s boundary line as close to the equator as possible.

Scientists routinely use HiRISE to study fresh impact craters caused by meteoroids that may have excavated chunks of ice. Most of these craters are no more than 33 feet (10 meters) in diameter, although in 2022 HiRISE captured a 492-foot-wide (150-meter-wide) impact crater that revealed a motherlode of ice that had been hiding beneath the surface.

In this artist’s concept, NASA astronauts drill into the Martian subsurface. The agency has created new maps that show where ice is most likely to be easily accessible to future astronauts.
NASA

“These ice-revealing impacts provide a valuable form of ground truth in that they show us locations where the presence of ground ice is unequivocal,” said Gareth Morgan, SWIM’s co-lead at the Planetary Science Institute. “We can then use these locations to test that our mapping methods are sound.”

In addition to ice-exposing impacts, the new map includes sightings by HiRISE of so-called “polygon terrain,” where the seasonal expansion and contraction of subsurface ice causes the ground to form polygonal cracks. Seeing these polygons extending around fresh, ice-filled impact craters is yet another indication that there’s more ice hidden beneath the surface at these locations.

There are other mysteries that scientists can use the map to study, as well.

“The amount of water ice found in locations across the Martian mid-latitudes isn’t uniform; some regions seem to have more than others, and no one really knows why,” said Nathaniel Putzig, SWIM’s other co-lead at the Planetary Science Institute. “The newest SWIM map could lead to new hypotheses for why these variations happen.” He added that it could also help scientists tweak models of how the ancient Martian climate evolved over time, leaving larger amounts of ice deposited in some regions and lesser amounts in others.

SWIM’s scientists hope the project will serve as a foundation for a proposed Mars Ice Mapper mission – an orbiter that would be equipped with a powerful radar custom-designed to search for near-surface ice beyond where HiRISE has confirmed its presence.

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2023-150

Share

Details

Last Updated

Oct 26, 2023

Powered by WPeMatico

Get The Details…
Naomi Hartono

NASA, Pacific Disaster Center Increase Landslide Hazard Awareness

NASA, Pacific Disaster Center Increase Landslide Hazard Awareness

5 min read

NASA, Pacific Disaster Center Increase Landslide Hazard Awareness

Communities worldwide now have access to a powerful tool to increase their awareness of landslide hazards, thanks to NASA and the Pacific Disaster Center.

A person stands with their back to the camera, wearing a brown vest that says "USAID". They are looking at a tree-covered mountain in the distance, which has a large landslide going down it, covered in rocks, dirt, and debris. A village sits at the bottom of the hill. The sky is gray and cloudy.
A humanitarian worker from USAID observes the impacts of a landslide. USAID deployed an elite Disaster Assistance Response Team on Nov. 17, 2020, to lead the U.S. response to Hurricanes Eta and Iota.
USAID’s Bureau for Humanitarian Assistance

After years of development and testing, NASA’s Landslide Hazard Assessment for Situational Awareness model (LHASA) has been integrated into the Pacific Disaster Center’s (PDC) multi-hazard monitoring, alerting, and decision-support platform, DisasterAWARE. LHASA allows researchers to map rainfall-triggered landslide hazards, giving DisasterAWARE users around the world a robust tool for identifying, tracking, and responding to these threats. The aim is to equip communities with timely and critical risk awareness that bolsters disaster resilience and safeguards lives and livelihoods.

Landslides cause thousands of deaths and billions of dollars in damage every year. Developing countries often bear disproportionate losses due to lack of access to hazard early warning systems and other resources for effective risk reduction and recovery. Reports from the United Nations Office for Disaster Risk Reduction emphasize that early warning systems and early action are among the most effective ways to decrease disaster-related deaths and losses.

A map of Earth, with oceans shaded as black and land as gray. There are numerous circles of differing sizes covering the maps, with colors from white to pink to dark red indicating the number of reported landslide-related fatalities in each region. Many of these fatalaties are concetrated in South and Central America, Asia, India, and the South Pacific Islands, and coastal regions of each continent.
The distribution of reported fatalities from 10,804 rainfall-triggered landslides in NASA’s Global Landslide Catalog (GLC) from 2007 to 2017. White dots represent incidents with zero reported fatalities and dots in the color scale from pink to red represent incidents in the range of 1-5000 fatalities. The NASA landslides team, based primarily out of NASA’s Goddard Space Flight Center, develops the Global Landslide Catalog and LHASA with support from NASA’s Disasters program.
NASA Scientific Visualization Studio

“Some local authorities develop their own systems to monitor landslide risk, but there isn’t a global model that works in the same way. That’s what defines LHASA: it works all the time and it covers most regions of the world,” says Robert Emberson, NASA Disasters associate program manager and a key member of the NASA landslides team. “Thanks to our collaboration with the Pacific Disaster Center, this powerful landslide technology is now even more accessible for the communities that need it most.”

LHASA uses a machine learning model that combines data on ground slope, soil moisture, snow, geological conditions, distance to faults, and the latest near real-time precipitation data from NASA’s IMERG product (part of the Global Precipitation Measurement mission). The model has been trained on a database of historical landslides and the conditions surrounding them, allowing it to recognize patterns that indicate a landslide is likely.

The result is a landslide “nowcast” – a map showing the potential of rainfall-triggered landslides occurring for any given region within the past day. This map of hazard likelihood can help agencies and officials rapidly assess areas where the current landslide risk is high. It can also give disaster response teams critical information on where a landslide may have occurred so they can investigate and deploy life-saving resources.  

A man on a motorcycle is blocked by a landslide that has fallen across the road,  covering it in large boulders, rocks and debris. A few other men working their way around the blockage. The sky is blue and slightly cloudy, and they are in a forested area.
In 2021, a 7.2 magnitude earthquake struck Haiti, triggering a series of landslides across the country. Landslides can destroy infrastructure and impede the movement of people and life-saving aid.
United Nations World Food Programme

Partnering to Protect the Vulnerable

Generating landslide nowcasts is merely the first step. To be truly effective, vulnerable communities must receive the data in a way that is accessible and easy to integrate into existing disaster management plans. That’s where the Pacific Disaster Center comes in.

PDC is an applied research center managed by the University of Hawaii, and it shares NASA’s goal to reduce global disaster risk through innovative uses of science and technology.  Its flagship DisasterAWARE software provides early warnings and risk assessment tools for 18 types of natural hazards and supports decision-making by a wide range of disaster management agencies, local governments, and humanitarian organizations. Prominent users include the International Federation of Red Cross and Red Crescent Societies (IFRC), the United Nations Office for the Coordination of Humanitarian Affairs (UN OCHA), and the World Food Programme (WFP).

“The close pairing of our organizations and use of PDC’s DisasterAWARE platform for early warning has been a special recipe for success in getting life-saving information into the hands of decision-makers and communities around the world,” said Chris Chiesa, PDC deputy executive director.

The collaboration with PDC brings NASA’s landslide tool to tens of thousands of existing DisasterAWARE users, dramatically increasing LHASA’s reach and effectiveness. Chiesa notes that teams in El Salvador, Honduras, and the Dominican Republic have already begun using these new capabilities to assess landslide hazards during the 2023 rainy season.

A screenshot from PDC DisasterAWARE showing a map of the Indochinese Peninsula. The land is gray and the water is blue, except for a region in the center of the map covered by red and orange polygons indicating increased landslide hazard risk. There is a toolbar on the left side of the image, and an icon over the landslide region indicating a landslide event may be occurring.
This screenshot from PDC’s DisasterAWARE Pro software shows LHASA landslide hazard probabilities for Myanmar in Sept. 2023. Red areas indicate the highest risk for landslide occurrence within the past three hours, while orange and yellow indicate lesser risk.
Pacific Disaster Center

PDC’s software ingests and interprets LHASA model data and generates maps of landslide risk severity. It then uses the data to generate landslide hazard alerts for a chosen region that the DisasterAWARE mobile app pushes to users. These alerts give communities critical information on potential hazards, enabling them to take protective measures.

DisasterAWARE also creates comprehensive regional risk reports that estimate the number of people and infrastructure exposed to a disaster – focusing specifically on things like bridges, roads, and hospitals that could complicate relief efforts when damaged. This information is critical for allowing decision-makers to effectively deploy resources to the areas that need them most. 

A screenshot from PDC DisasterAWARE showing a disaster exposure report for the Indochinese Peninsula. A map of the region is on the left showing the area affected by increased landslide risk. On the right are statistics on the population exposed, critical infrastructure, and breakdown of key needs.
DisasterAWARE landside risk report for Myanmar, showing estimated population, infrastructure and capital exposure to landslide risk, as well as the community’s needs.
Pacific Disaster Center

This effort between NASA and the PDC builds upon a history of fruitful cooperation between the organizations. In 2022, they deployed a NASA global flood modeling tool to enhance DisasterAWARE’s flood early-warning capabilities. They have also shared data and expertise during multiple disasters, including Hurricane Iota in 2020, the 2021 earthquake in Haiti, and the devastating August 2023 wildfires in Maui, PDC’s base of operations.

“The LHASA model is all open-source and leverages publicly available data from NASA and partners,” says Dalia Kirschbaum, lead of the NASA landslides team and director of Earth Sciences at NASA’s Goddard Space Flight Center. “This enables other researchers and disaster response communities to adapt the framework to regional or local applications and further awareness at scales relevant to their decision-making needs.” Kirschbaum and her team were recently awarded the prestigious NASA Software of the Year award for their work developing LHASA. 

Share

Details

Last Updated

Oct 26, 2023

Related Terms

5 min read

NASA, Pacific Disaster Center Increase Landslide Hazard Awareness

Powered by WPeMatico

Get The Details…
Jacob B. Reed