Station Science 101: Growing Plants in Space

Station Science 101: Growing Plants in Space

Arabadopsis thaliana plants growing in the International Space Stations Advanced Plant Habitat for the Plant Habitat-03 investigation, which looks at whether plants grown in space can pass adaptations to their next generation.
Thale cress plants from the Plant Habitat-03 investigation just before a harvest.
NASA

As NASA plans missions to the Moon and Mars, a key factor is figuring out how to feed crew members during their weeks, months, and even years in space.

Astronauts on the International Space Station primarily eat prepackaged food, which requires regular resupply and can degrade in quality and nutrition. Researchers are exploring the idea of crews growing some of their food during a mission, testing various crops and equipment to figure out how to do this without a lot of extra hardware or power.

Picking the right plants

The first step in this research is identifying which plants to test. NASA started a project in 2015 with the Fairchild Botanical Garden in Miami called “Growing Beyond Earth.” The program has recruited hundreds of middle and high school science classes across the U.S. to grow different seeds in a habitat similar to one on the space station. Seeds that grow well in the classrooms are then tested in a chamber at NASA’s Kennedy Space Center. Ones that do well there are sent to the station to test how they grow in microgravity.

Gardens in space

NASA also has tested facilities to host future microgravity gardens. One is the Vegetable Production System, or Veggie, a simple, low-power chamber that can hold six plants. Seeds are grown in small fabric “pillows” that crew members look after and water by hand, similar to caring for a window garden on Earth.

Another system, the Passive Orbital Nutrient Delivery System, or Veggie PONDS, works with the Veggie platform but replaces seed pillows with a holder that automatically feeds and waters the plants. The Advanced Plant Habitat is a fully automated device designed to study growing plants in ways that require only minimal crew attention.

Mark Vande Hei harvests for the Veggie PONDS investigation.
NASA

The right light and food

A series of experiments aboard the space station known as Veg-04A, Veg-04B, and Veg-05 grew Mizuna mustard, a leafy green crop, under different light conditions and compared plant yield, nutritional composition, and microbial levels. The investigation also compared the space-grown plants to ones grown on Earth, and had crew members rate the flavor, texture, and other characteristics of the produce.

Plant Habitat-04 analyzed plant-microbe interactions and assessed the flavor and texture of chile peppers. The first crop, harvested on Oct. 29, 2021, was eaten by the crew and 12 peppers from the second harvest were returned to Earth for analysis. This experiment demonstrated that research about space crop production is on the right path and researchers plan to apply lessons learned to testing other plants.

image of astronaut posing with floating chili peppers in the meal area of the space station
NASA astronauts Mark Vande Hei and Shane Kimbrough, JAXA astronaut Akihiko Hoshide, and NASA astronaut Megan McArthur with chile peppers grown for Plant Habitat-04.
NASA

The influence of gravity

An early experiment, PESTO, found that microgravity alters leaf development, plant cells, and the chloroplasts used in photosynthesis, but did not harm the plants overall. In fact, wheat plants grew 10% taller compared to those on Earth.

The Seedling Growth investigations showed that seedlings can acclimate to microgravity by modulating expression of some genes related to the stressors of space, a discovery that adds to knowledge about how microgravity affects plant physiology [1].

One way that plants sense gravity is via changes to calcium within their cells. Plant Gravity Sensing, a JAXA (Japan Aerospace Exploration Agency) investigation, measured how microgravity affects calcium levels, which could help scientists design better ways to grow food in space.

ADVASC, an investigation that grew two generations of mustard plants using the Advanced Astroculture chamber, showed that seeds were smaller but germination rates near normal in microgravity [2].

image of a close-up view of plants grown in experiment
Close-up view of Apogee Wheat Plants grown as part of the PESTO experiment during Expedition 4.
NASA

Water delivery

One significant challenge for growing plants in microgravity is providing enough water to keep them healthy without drowning them in too much water. Plant Water Management demonstrated a hydroponic (water-based) method for providing water and air to plant roots. The XROOTS study tested using both hydroponic and aeroponic (air-based) techniques to grow plants rather than traditional soil. These techniques could enable large-scale crop production for future space exploration.

Jessica Watkins and Bob Hines work on a botany investigation on board the International Space Station
NASA astronauts Jessica Watkins and Bob Hines work on the XROOTS investigation.
NASA

Transplanting veggies

During a series of investigations called VEG-03, which cultivated Extra Dwarf Pak Choi, Amara Mustard, and Red Romaine Lettuce, NASA astronaut Mike Hopkins noticed some of the plants were struggling. Hopkins conducted the first plant transplant in space, moving extra sprouts from thriving plant pillows into two of the struggling pillows in Veggie. The transplants survived and grew, opening new possibilities for future plant growth.

Plant genetics

Plants exposed to spaceflight undergo changes that involve the addition of extra information to their DNA, affecting how genes turn on or off without changing the sequence of the DNA itself. This process is known as epigenetic change. Plant Habitat-03 assesses whether such adaptations in one generation of plants grown in space can transfer to the next generation.

The long-term goal is to understand how epigenetics contribute to adaptive strategies that plants use in space and, ultimately, develop plants better suited for providing food and other services on future missions. Results also could support the development of strategies for adapting crops and other economically important plants for growth in marginal and reclaimed habitats on Earth.

The human effect

Gardens need tending, of course. The Veg-04A, Veg-04B, and Veg-05 investigations also looked at how tending plants contributed to the well-being of astronauts. Many astronauts reported they found caring for plants an enjoyable and relaxing activity – another important contribution to future long-duration missions.

image of astronauts collecting leaf samples from experiment
NASA astronauts Shannon Walker and Michael Hopkins collect leaf samples from plants growing inside the European Columbus laboratory for the Veg-03 experiment during Expedition 64.
NASA

Citations:

1 Medina F, Manzano A, Herranz R, Kiss JZ. Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life. 2022, 12(10), 1484; https://doi.org/10.3390/life12101484

2 Link BM, Busse JS, Stankovic B. Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity. Astrobiology. 2014 October; 14(10): 866-875. DOI: 10.1089/ast.2014.1184.PMID: 25317938

Powered by WPeMatico

Get The Details…
Ana Guzman

News Media Invited to NASA Langley’s Open House

News Media Invited to NASA Langley’s Open House

A NASA employee wears an astronaut suit and stands on bright green and freshly cut grass in front of the welcome sign at NASA Langley Research Center. The welcome sign features a large, blue globe with the NASA insiginia on it and text on a long stone ridge that reads "Langley Research Center." Flowers line the edge of the stone ridge.
NASA’s “Spacey Casey” welcomes visitors to NASA Langley Research Center.
NASA

2 min read

News Media Invited to NASA Langley’s Open House

HAMPTON, Virginia – Members of the media are invited to cover the Open House at NASA’s Langley Research Center in Hampton, Virginia. The event takes place 9 a.m. to 4 p.m. Saturday, Oct. 21, 2023.

Media will have photo, video, and interview opportunities. Center Director Clayton Turner and NASA astronaut Victor Glover will be available to answer media questions at 9 a.m. on Saturday. 

This is the first time since 2017 Langley has opened its gates and doors to the public, inviting them to learn more about the center’s innovative aerospace research.

Event: Open House 
Date: Saturday, Oct. 21, 2023  
Time: 9 a.m. to 4 p.m.  
Location: NASA’s Langley Research Center, Hampton, Va.
RSVP Deadline: Friday, Oct. 20, 2023 at 2 p.m.

Please note! In order to cover the event and have access to parking on center, media outlets must RSVP with Brittny McGraw at 757-769-3763 or  brittny.v.mcgraw@nasa.gov no later than 2 p.m. Friday, Oct. 20. Media who attempt to come to the center without an RSVP will not have vehicle access.

Media interested in interviewing Clayton Turner and Victor Glover should follow the procedures listed above, but must arrive no later than 8:30 a.m. on Saturday, Oct. 21.

Helpful links:

NASA Langley Research Center: https://www.nasa.gov/langley/

NASA Langley’s Open House: https://openhouse.larc.nasa.gov/

Please contact:

Brittny McGraw  
Langley Research Center, Hampton, Va. 
757-769-3763 
brittny.v.mcgraw@nasa.gov

David Meade  
Langley Research Center, Hampton, Va. 
757-751-2034
davidlee.t.meade@nasa.gov

-end-

Powered by WPeMatico

Get The Details…
Sondra Woodward

The Space Life Sciences Training Program at Ames Research Center

The Space Life Sciences Training Program at Ames Research Center

NASA SLST Logo

Space Life Sciences Training Program

An investment in tomorrow

The Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years, and entering graduate students, with professional experience in space life science disciplines. This challenging ten-week summer program is hosted by NASA’s Ames Research Center in the heart of California’s Silicon Valley. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences.

Summer 2023 SLSTP students at Ames Research Center.
Summer 2023 SLSTP students present their projects during midterm.
NASA / Stephanie Perreau Rainey

The SLSTP Experience
In this rigorous program, students work closely with renowned NASA scientists and engineers on cutting-edge research, benefitting from the concentration of bioscience expertise at Ames. In addition to conducting hands-on research, SLSTP students attend technical lectures given by experts on a wide range of topics and tour NASA research facilities.

This program provides opportunities for students to develop professional skills. These include technical and professional development training, presenting their scientific work and submitting an abstract to a professional scientific organization (e.g. the American Society for Gravitational and Space Research.)

SLSTP participants are exposed to a broad scope of space biosciences research performed by NASA scientists. While learning about the tools and methodology that enable biological experiments to be conducted in flight, students acquire skills and knowledge required for the design and execution of life science research conducted in microgravity.

Participants in the program receive a stipend and may be eligible to attend a scientific conference to formally present their research.

Research Areas
Students in SLSTP undertake research projects in multiple areas, including:

  • The effects of spaceflight on living systems, conducted both on the ground and also in space aboard the International Space Station and other spacecraft.
  • The development and operation of specialized research facilities to support investigations in microgravity, partial gravity, and hypergravity.
  • Research and development of advanced biotechnologies that enable NASA’s exploration of distant destinations.

Information for Applicants
The SLSTP is an equal opportunity program. Admission is by competitive application process. Past student participants were selected for their outstanding merit, passion for space, and desire to study space life science. Applicants must fulfill the following requirements: be a US citizen, age 18 or older in high academic standing (GPA of 3.2 or greater). Applicants should be junior or senior undergraduate student next Fall or a senior graduating in 2024 and entering graduate school for Fall 2024.

How to Apply:
Applications for the summer 2024 program will be opening soon in late 2023. Applications will be open in the NASA Internships Gateway portal.

SLSTP Mailing List
To subscribe to our mailing list and to receive e-mail announcements about the program and application process, please send an email to arc-slstp@mail.nasa.gov with “subscribe” in the subject to be added to our mailing list.

Program Support
The SLSTP is funded by NASA’s Space Biology Program, which is part of the Biological and Physical Sciences Division of NASA. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

For more information, contact:
arc-slstp@mail.nasa.gov

Powered by WPeMatico

Get The Details…
Sonja Caldwell

Station Science 101: Microbiology

Station Science 101: Microbiology

astronaut Joe Acaba using an air sampling device inside the space station
NASA astronaut Joe Acaba with one of the Microbial Air Samplers, devices that monitor microbes in the air of the space station.
NASA

Wherever there are humans, there are microbes, too. Bacteria and fungi live all around us, in our homes, offices, industrial areas, the outdoors – even in space. People literally could not live without these tiny organisms, many of which are beneficial.

The trick is limiting potentially harmful ones, particularly in a contained environment such as a spacecraft. So from the launch of the very first module of the International Space Station, NASA has monitored its microbial community.

Because the station is an enclosed system, the only way that microbes get there is hitching a ride on the contents of resupply spacecraft from Earth and on arriving astronauts. The NASA Johnson Space Center Microbiology Laboratory puts a lot of effort into knowing which microbes ride along.

“We can’t sterilize everything we send into space, and don’t want to, but we do a lot to limit potential pathogens from making their way to the station,” says NASA microbiologist Sarah Wallace, Ph.D. “At launch, the cargo, food, vehicles, and crew members each have their own microbiome, or suite of microbes. When everything gets to the station, these microbiomes become part of the space station microbiome.”

The lab uses the traditional method of culturing a sample in a growth medium, similar to Petri dishes from high school science class, to sample a portion of everything during packing for launch and the launch vehicles themselves. This sampling confirms that contamination control plans are working properly – essentially making sure the numbers of microbes remain low and that those present are the ones normally expected.

bacteria culture inside space station
Astronauts sample a surface on the International Space Station for this microbial culture slide.
NASA

Then the lab continues monitoring after the vehicle, cargo, and crew arrive at the station. Crew members sample and culture microbes from the air, surfaces, and water on the station.

“It’s kind of a spot check to see how well housekeeping procedures are being implemented and how well the water system and the air filters are working,” Wallace says.

She calls the station’s water processing system “a phenomenal piece of engineering” that produces water much cleaner than most of us drink on Earth. In addition, the station itself is remarkably clean thanks to HEPA filters for the air and housekeeping practices for surfaces. “What microbes we see are really what we’d see if we looked at your home. In fact, we’ve done several studies comparing the station to a typical home and it is similar but usually cleaner,” she adds.

This monitoring over the lifetime of the orbiting lab has created a unique, long-term database that helps microbiologists know what to expect.

“Our requirements are two-fold, how much is there and what is there,” Wallace says. For years, the scientists didn’t know the ‘what’ until samples came back to ground. Now the equipment exists to perform direct swab-to-sequencer identification, eliminating the need to culture samples and return them to Earth. That equipment includes the miniPCR, a device that amplifies or makes many copies of a DNA strand using a process called polymerase chain reaction (PCR), and the MinION, a portable DNA sequencer. The Genes in Space 3 collaboration between Boeing and NASA paired these two platforms together, which led to the first identification of unknown bacteria off Earth.

NASA’s lab then conducted tests and confirmed that microbe identifications from the inflight process matched those determined on the ground down to the species level1.

“For the first time ever, we identified unknown microbes collected and cultured off Earth,” says Wallace. “We followed that up with the swab-to-sequencer, which lets us move away from culturing completely. We can swab a surface and sequence whatever is there.”

sample culture dishes inside the space station
Plates for culturing samples collected by the Microbial Air Samplers on the space station.
NASA

Subsequent work advanced the use of sequencing in space and later tests found that the culture-independent method showed the same microbial distributions as the standard culture-dependent method2. The swab-and-sequence method has been streamlined so that crew members can easily complete it in an extreme environment.

That is a critical capability for future missions to the Moon and Mars, both to continue to protect crew health and safety and to make sure that we do not contaminate other worlds. If explorers detect microbial life on another planet, they need to know whether it was already there or came from Earth.

Researchers also use the space station to conduct long-term microbial studies. The Microbial Tracking series studied what kinds of microbes are on the space station, both in the environment and in the astronauts’ bodies.

In addition to surveying the types of microbes present on the station, the lab studies whether those microbes could be harmful, as microgravity and radiation in space can render innocuous microorganisms potentially harmful and microbial behavior can change as the organisms adapt to the spaceflight environment.

So far, microbial issues on Earth far exceed any seen in space, Wallace says. “In addition to all the preflight monitoring, crew members are quarantined prior to launch. These steps were started back during Apollo missions and still are effective toward keeping our crews healthy.”

Because where people go, scientists want to know what microbes follow.

Citations

1 Burton AS, Stahl-Rommel SE, John KK, Jain M, Juul S, Turner DJ, Harrington ED, Stoddart D, Paten B, Akeson M, Castro-Wallace SL. Off Earth Identification of Bacterial Populations Using 16S rDNA Nanopore Sequencing. Genes. 2020 January 9; 76(11): 76 (https://www.mdpi.com/2073-4425/11/1/76)

2 Stahl-Rommel S, Jain M, Nguyen HN, Arnold RR, Aunon-Chancellor SM, Sharp GM, Castro CL, John KK, Juul S, Turner DJ, et al. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes. 2021; 12(1):106. (https://www.mdpi.com/2073-4425/12/1/106)

Powered by WPeMatico

Get The Details…
NASA

55 Years Ago: Nine Months Before the Moon Landing

55 Years Ago: Nine Months Before the Moon Landing

In October 1968, the American human spaceflight program took significant steps toward achieving President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to the Earth before the end of the decade. American astronauts returned to space after a 23-month hiatus. The success of the 11-day Apollo 7 mission heralded well for NASA to decide to send the next mission, Apollo 8, to orbit the Moon in December. The Saturn V rocket for that flight rolled out to its seaside launch pad two days before Apollo 7 lifted off. Preparations for later missions to test the Lunar Module (LM) in Earth orbit and around the Moon continued in parallel, as did work in anticipation of astronauts and their lunar samples returning from the Moon. Meanwhile, the Soviet Union also resumed its human spaceflight program.

Apollo 7 astronauts Donn F. Eisele,Walter M. Schirra, and R. Walter Cunningham review flight trajectories with Director of Flight Crew Operations Donald K. “Deke” Slayton shortly before launch Schirra, Eisele, and Cunningham suit up for launch Liftoff of Apollo 7, returning American astronauts to space
Left: Apollo 7 astronauts Donn F. Eisele, left, Walter M. Schirra, and R. Walter Cunningham review flight trajectories with Director of Flight Crew Operations Donald K. “Deke” Slayton shortly before launch. Middle: Schirra, left, Eisele, and Cunningham suit up for launch. Right: Liftoff of Apollo 7, returning American astronauts to space!

The liftoff of Apollo 7 astronauts Walter M. Schirra, Donn F. Eisele, and R. Walter Cunningham on Oct. 11, 1968, signaled the end of a 23-month hiatus in American human spaceflights resulting from the tragic Apollo 1 fire. To prevent a recurrence of the fire and to increase overall safety, NASA and North American Rockwell in Downey, California, redesigned the Apollo spacecraft, and Schirra, Eisele, and Cunningham spent months training to test it in Earth orbit. By the time they lifted off from Launch Pad 34 at NASA’s Kennedy Space Center (KSC) in Florida, the Saturn V rocket for the Apollo 8 mission had already rolled out to Launch Pad 39A a few miles away.

View of Apollo 7 lifting off from Launch Pad 34 The Apollo 7 S-IVB third stage, used as a rendezvous target Apollo 7 astronauts Donn F. Eisele, Walter M. Schirra, and R. Walter Cunningham on the prime recovery U.S.S. Essex
Left: View of Apollo 7 lifting off from Launch Pad 34, with the Saturn V for Apollo 8 on Launch Pad 39A in the background. Middle: The Apollo 7 S-IVB third stage, used as a rendezvous target. Right: Apollo 7 astronauts Donn F. Eisele, left, Walter M. Schirra, and R. Walter Cunningham on the prime recovery U.S.S. Essex following their successful 11-day mission.

During their 11-day mission, Schirra, Eisele, and Cunningham thoroughly tested the redesigned Apollo spacecraft. Early in the mission, they performed rendezvous maneuvers with their rocket’s S-IVB second stage, a maneuver planned for later missions to retrieve the LM. They thoroughly tested the Service Propulsion System engine, critical on later lunar missions for getting into and out of lunar orbit, by firing it on eight occasions, including the critical reentry burn to bring them home. The three astronauts conducted the first live television broadcasts from an American spacecraft, providing viewers on the ground with tours of their spacecraft. Teams from the U.S.S. Essex (CV-9) recovered Schirra, Eisele, and Cunningham and their Command Module (CM) from the Atlantic Ocean on Oct. 22. Apollo program managers declared that Apollo 7 “accomplished 101%” of its planned objectives. 

Apollo 8 astronauts James A. Lovell, William A. Anders, and Frank Borman attend the rollout of their Saturn V from the Vehicle Assembly Building to Launch Pad 39A The Apollo 8 Saturn V at Launch Pad 39A Borman, left, Lovell, and Anders pose with their Saturn V
Left: Apollo 8 astronauts James A. Lovell, left, William A. Anders, and Frank Borman attend the rollout of their Saturn V from the Vehicle Assembly Building to Launch Pad 39A. Middle: The Apollo 8 Saturn V at Launch Pad 39A. Right: Borman, left, Lovell, and Anders pose with their Saturn V following a crew egress exercise from their spacecraft.

The success of Apollo 7 gave NASA the confidence to announce in November that the next mission, Apollo 8, would attempt to enter orbit around the Moon. In early October, workers in High Bay 2 of KSC’s Vehicle Assembly Building (VAB) completed the stacking of the Saturn V rocket for Apollo 8 by adding the Command and Service Module (CSM). On Oct. 9, two days before Apollo 7 lifted off, as the Apollo 8 crew of Frank Borman, James A. Lovell, and William A. Anders and other NASA officials looked on, the completed Saturn V rolled out from the VAB to begin its eight-hour journey to Launch Pad 39A, three and a half miles away. After the rocket arrived at the pad and engineers began testing it, on Oct. 23, Borman, Lovell, and Anders suited up and practiced emergency egress from the spacecraft, as did their backups Neil A. Armstrong, Edwin E. “Buzz” Aldrin, and Fred W. Haise.

Apollo 8 astronauts Frank Borman, William A. Anders, and James A. Lovell on the deck of the M/V Retriever prepare for their water egress test Anders, Lovell, and Borman inside the boilerplate Apollo spacecraft during the water egress test Anders, Lovell, and Borman in the life raft after egressing from their spacecraft
Left: Apollo 8 astronauts Frank Borman, left, William A. Anders, and James A. Lovell on the deck of the M/V Retriever prepare for their water egress test. Middle: Anders, left, Lovell, and Borman inside the boilerplate Apollo spacecraft during the water egress test. Right: Anders, left, Lovell, and Borman in the life raft after egressing from their spacecraft.

As part of their training, Borman, Lovell, and Anders conducted water egress training in the Gulf of Mexico near Galveston, Texas. On Oct. 25, sailors aboard the Motor Vessel M/V Retriever lowered a mockup CM with the crew inside into the water in a nose-down position. Flotation bags inflated to right the spacecraft to a nose-up position. The astronauts then exited the capsule onto life rafts and recovery personnel hoisted them aboard a helicopter. The next day, backups Armstrong, Aldrin, and Haise repeated the test. 

Workers in the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida lower the S-IVB third stage onto the S-II second stage during stacking operations of the Apollo 9 Saturn V Apollo 9 astronaut Russell L. Schweickart practices entering and leaving the Command Module while wearing a pressure suit during brief periods of weightlessness aboard a KC-135 aircraft Engineers conduct a docking test between the Apollo 9 CM, bottom, and Lunar Module in an altitude chamber in KSC’s Manned Spacecraft Operations Building
Left: Workers in the Vehicle Assembly Building at NASA’s Kennedy Space Center (KSC) in Florida lower the S-IVB third stage onto the S-II second stage during stacking operations of the Apollo 9 Saturn V. Middle: Apollo 9 astronaut Russell L. Schweickart practices entering and leaving the Command Module while wearing a pressure suit during brief periods of weightlessness aboard a KC-135 aircraft. Right: Engineers conduct a docking test between the Apollo 9 CM, bottom, and Lunar Module in an altitude chamber in KSC’s Manned Spacecraft Operations Building.

Preparations for Apollo 9 included training for the first spacewalk of the Apollo program. According to the mission plan, with the LM and CM docked, crew members in both spacecraft would open their hatches. During the spacewalk, one astronaut would transfer from the LM to the CM using handrails for guidance and enter the CM in a test of an emergency rescue capability. The training for this activity took place aboard a KC-135 aircraft from Patrick Air Force Base (AFB) in Florida. By flying repeated parabolic trajectories, the aircraft could simulate 20-30 seconds of weightlessness at a time, during which the astronauts wearing space suits practiced entering and exiting a mockup of the CM. Backup crew members Alan L. Bean and Richard F. Gordon completed the training on Oct. 9 followed by David R. Scott and Russell L. Schweickart of the prime crew the next day. North American Rockwell delivered the Apollo 9 CSM to KSC in early October. At the end the month, technicians in KSC’s Manned Spacecraft and Operations Building (MSOB) conducted a docking test of the Apollo 9 LM and CSM to verify the interfaces between the two vehicles. In the VAB’s High Bay 3, workers stacked the three stages of the Saturn V rocket for Apollo 9 during the first week of October.

Workers in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida uncrate the Apollo 10 Lunar Module (LM) descent stage shortly after its arrival MSOB workers unwrap the Apollo 10 LM ascent stage MSOB workers prepare to mate the Apollo 10 LM ascent stage to its descent stage
Left: Workers in the Manned Spacecraft Operations Building (MSOB) at NASA’s Kennedy Space Center in Florida uncrate the Apollo 10 Lunar Module (LM) descent stage shortly after its arrival. Middle: MSOB workers unwrap the Apollo 10 LM ascent stage. Right: MSOB workers prepare to mate the Apollo 10 LM ascent stage to its descent stage.

In preparation for Apollo 10, planned as a test of the CSM and LM in lunar orbit, the Grumman Aircraft Engineering Corporation in Bethpage, New York, delivered the LM for that mission to KSC. The descent stage arrived Oct. 11, followed by the ascent stage five days later. Technicians in the MSOB mated the two stages and installed the assembled vehicle into a vacuum chamber on Nov. 2 to begin a series of altitude tests.

A flight of the Lunar Landing Training Vehicle at Ellington Air Force Base in Houston The forward instrument panel of the Lunar Module Test Article-8 Richard Wright, administrative assistant for the Lunar Receiving Laboratory, gives astronaut Michael Collins a tour of the gloveboxes for examining lunar samples
Left: A flight of the Lunar Landing Training Vehicle at Ellington Air Force Base in Houston. Middle: The forward instrument panel of the Lunar Module Test Article-8. Right: Richard Wright, administrative assistant for the Lunar Receiving Laboratory, gives astronaut Michael Collins a tour of the gloveboxes for examining lunar samples.

The Lunar Landing Training Vehicle (LLTV), built by Bell Aerosystems of Buffalo, New York, allowed Apollo astronauts to master the intricacies of landing on the Moon by simulating the LM’s performance in the final few hundred feet of the descent to the surface. Although an excellent training tool, the LLTV and its predecessor the Lunar Landing Research Vehicle (LLRV) also carried some risk. Astronaut Armstrong ejected from an LLRV on May 6, 1968, moments before it crashed at Houston’s Ellington AFB. The final accident investigation report, issued on Oct. 17, cited a loss of helium pressure that caused depletion of the fuel used for the reserve attitude thrusters, with inadequate warning to the pilot as a contributing factor. By that time, Chief of Aircraft Operations Joseph S. “Joe” Algranti piloted the properly modified LLTV during its first flight on Oct 3. Algranti and NASA pilot H.E. “Bud” Ream completed 14 checkout flights before a crash in December grounded the LLTV. In October, NASA began a series of critical thermal-vacuum tests to certify the Apollo LM for lunar missions. The tests, conducted in the Space Environment Simulation Laboratory (SESL), at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston, involved Grumman pilots Gerald P. Gibbons and Glennon M. Kingsley and astronaut James B. Irwin. The tests using Lunar Module Test Article-8, concluded in November, and simulated the temperatures expected during a typical flight to the Moon and descent to the surface.

To receive astronauts and their lunar samples after their return from the Moon, NASA built the Lunar Receiving Laboratory (LRL) in MSC’s Building 37. The LRL’s special design isolated astronauts and rock samples returning from the Moon to prevent back-contamination of the Earth by any possible lunar micro-organisms. By October 1968, with the Moon landing likely less than a year away, the LRL had reached a state of readiness that warranted a simulation of some its capabilities. Between Oct. 22 and Nov. 1, managers, scientists, and technicians carried out a 10-day simulation of LRL operations following a lunar landing mission. Although the exercise uncovered many deficiencies, enough time remained to correct them before the actual Moon landing.

Lift off of Soyuz 3 from the Baikonur Cosmodrome carrying cosmonaut Georgi T. Beregovoi Beregovoi during a television broadcast from Soyuz 3 The Soyuz 3 spacecraft carrying Beregovoi descends under its parachute for a soft-landing
Left: Lift off of Soyuz 3 from the Baikonur Cosmodrome carrying cosmonaut Georgi T. Beregovoi. Middle: Beregovoi during a television broadcast from Soyuz 3. Right: The Soyuz 3 spacecraft carrying Beregovoi descends under its parachute for a soft-landing. Image credits: courtesy Roscosmos.

As a reminder that a race to the Moon still existed, the Soviet Union also resumed crewed missions, halted in April 1967 by the death of Soyuz 1 cosmonaut Vladimir M. Komarov. Just three days after the Apollo 7 splashdown, the Soviets launched Soyuz 2, but without a crew. The next day, Soyuz 3 lifted off with cosmonaut Georgi T. Beregovoi aboard, at 47 the oldest person to fly in space up to that time. Although Beregovoi brought the two spacecraft close together, he could not achieve the intended docking. Soyuz 2 landed on Oct. 28 and Beregovoi in Soyuz 3 two days later. Following the Zond 5 circumlunar flight in September, rumors persisted that the next Zond mission may soon carry two cosmonauts on a similar circumlunar flight. The apparently successful Zond 5 mission coupled with the rumors of an imminent Soviet crewed lunar mission possibly contributed to the decision to send Apollo 8 on its historic circumlunar flight in December 1968.

News from around the world in October 1968:

Oct. 2 – Redwood National Park established to preserve the tallest trees on Earth.

Oct. 7 – The Motion Picture Association of America adopts a film rating system.

Oct. 12 – Equatorial Guinea gains independence from Spain.

Oct. 12 – The XIX Olympic Games open in Mexico City, the first time the games held in Latin America.

Oct. 14 – The Beatles finish recording the double “White Album.”

Oct. 16 – The Jimi Hendrix Experience releases its last studio album “Electric Ladyland.”

Oct. 17 – Release of the film “Bullitt,” starring Steve McQueen.

Oct. 20 – American high jumper Dick Fosbury introduces the Fosbury Flop technique at the Mexico City Olympics.

Oct. 24 – The 199th and last flight of the X-15 hypersonic rocket plane takes place at Edwards Air Force Base in California, piloted by NASA pilot William H. Dana.

Oct. 25 – Led Zeppelin gives its first concert, at Surrey University in England.

Powered by WPeMatico

Get The Details…
Kelli Mars