NASA’s MAVEN Observes the Disappearing Solar Wind

NASA’s MAVEN Observes the Disappearing Solar Wind

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

In December 2022, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission observed the dramatic and unexpected “disappearance” of a stream of charged particles constantly emanating off the Sun, known as the solar wind. This was caused by a special type of solar event that was so powerful, it created a void in its wake as it traveled through the solar system.

Learn about the “disappearance” of the solar wind at Mars that was witnessed by MAVEN – an event last seen nearly a quarter-century ago at Earth.
Credit: NASA’s Goddard Space Flight Center
Download high-resolution video and images from NASA’s Scientific Visualization Studio.

Due to this event, MAVEN’s measurements at Mars showed that the number of particles making up the solar wind dropped significantly. Without the pressure of the solar wind, the Martian atmosphere and magnetosphere expanded by thousands of kilometers. MAVEN is the only asset currently at Mars able to simultaneously observe both the Sun’s activity and the response of the Martian atmosphere to these solar influences.

“When we first saw the data, and how dramatic the drop in the solar wind was, it was almost unbelievable,” said Jasper Halekas, professor at the University of Iowa and the lead author on a new study on the event. “We formed a working group to study the event, and we have found this time period to be rich with incredible findings.”

Mars, like all the planets in our solar system, is constantly immersed in the solar wind. The solar wind exerts pressure on the Martian magnetosphere and ionosphere, and drives much of the escape of the atmosphere. The solar event in December 2022 was caused by faster-moving solar wind that overtook slower moving solar wind, which acted like a broom, sweeping and compressing the two regions together. This interaction, called a stream interaction region, left behind a rare void of extremely low-density solar wind in its wake, which was observed by MAVEN. This “disappearance” of the solar wind led to some incredible interactions within Mars’ magnetosphere and ionosphere.

As the density of the solar wind dropped by a factor of 100, it caused the pressure to decrease and the magnetosphere and ionosphere of the planet were able to expand by thousands of kilometers­—more than tripled the typical size—and dramatically changed in character. The Sun’s magnetic field that typically is embedded within the Martian ionosphere was pushed outwards, which transformed the ionosphere from a magnetized to unmagnetized state. At the same time, the layer between the solar wind and the magnetosphere became unusually electromagnetically quiet. MAVEN’s observations of this dramatic event and subsequent transformation and expansion of the whole system is important to better understand the physics that drive atmospheric and water loss at Mars.

“We are really getting to see how Mars responds when the solar wind is effectively removed,” Halekas added. “It makes for a great outlier study on what Mars would be like if it were orbiting a less ‘windy’ star.” 

Disappearing solar wind events on this scale are extremely rare and are produced at a time of increasing solar activity, so this was the first time the MAVEN mission had the opportunity to observe such a phenomenon. While other spacecraft at Mars and Earth also observed aspects of this event, only MAVEN was able to simultaneously take measurements from both the Sun and the Martian atmosphere’s response to it.

“Observing extreme conditions is always scientifically invaluable,” said Shannon Curry, principal investigator for MAVEN at the University of California, Berkeley. “MAVEN was designed to observe these types of interactions between the Sun and the Martian atmosphere, and the spacecraft provided exceptional data during this truly anomalous solar event.”

As the Sun moves toward solar maximum, the peak of its 11-year activity cycle, the MAVEN mission could have an even bigger impact on our understanding of extreme solar events.

“This really shows the cross-divisional role that MAVEN plays at Mars,” said Gina DiBraccio, MAVEN deputy principal investigator and deputy director of the Heliophysics Science Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “MAVEN is not only observing the dynamics of the Martian atmosphere, it is also monitoring solar inputs to enhance our understanding of the Sun.”

The study is being presented at the American Geophysical Union Fall Meeting in San Francisco.

MAVEN’s principal investigator is based at the University of California, Berkeley, while NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support. The Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder is responsible for managing science operations and public outreach and communications. The MAVEN team is preparing to celebrate the spacecraft’s 10th year at Mars in September 2024.

Willow Reed
Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder

Media Contacts:
Nancy Neal Jones
NASA’s Goddard Space Flight Center

Powered by WPeMatico

Get The Details…
Jamie Adkins

NASA and Partners Study Contrail Formation

NASA and Partners Study Contrail Formation

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

DC-8 aircraft conduct research in flight of condensation trails.
NASA Armstrong Flight Research Center’s DC-8 aircraft flew from California to Everett, Washington on Oct. 10 to conduct research on aircraft condensation trails. The contrails emitted from a Boeing 737-10 plane involved in the testing are visible as it flies past.
NASA / Jim Ross

In a collaboration between multiple partners in the aviation industry, NASA is helping determine if the latest advances in aircraft engines and fuels can reduce atmospheric warming from condensation trails. Those condensation trails can trap heat in our atmosphere under specific conditions and increase the impact the aviation industry has on global warming.

NASA partnered with the Boeing ecoDemonstrator Explorer Program and others including General Electric Aerospace, the Federal Aviation Administration, the German Aerospace Center, United Airlines, and World Energy. Their goal was to see if sustainable aviation fuels and advanced engine technology can decrease contrail formation.

Rich Moore, NASA’s principal investigator for ecoDemonstrator, watches the livestream of footage from a camera located under the belly of the DC-8 on Oct. 10. The contrails from the Boeing plane are visible on his laptop monitor.
NASA / Jim Ross

In October, NASA Armstrong Flight Research Center’s DC-8 aircraft flew behind a Boeing ecoDemonstrator Explorer, a 737-10 passenger jet that the company plans to turn over to United Airlines, to capture and measure its emissions. Scientists outfitted the DC-8 with instruments to collect data that will compare the emissions from sustainable aviation fuel to the emissions from conventional jet fuel. In its fifth decade of flying science missions, the DC-8 is the largest flying science laboratory in the world and served as an ideal platform for experts from the Advanced Air Transport Technology project in NASA’s Advanced Air Vehicles Program, and other scientific partners. 

Innovative technologies like sustainable aviation fuel and more efficient engine designs require state-of-the-art test models and exhaustive research methods performed by the most qualified experts in the world. That is what the ecoDemonstrator Explorer Program as a collaboration provided. Results from this collaborative study will be publicly available within a year to help the aviation sector improve its environmental impact worldwide.

NASA’s DC-8 aircraft from Armstrong Flight Research Center in Edwards, California flies to Everett, Washington to conduct science research about reducing engine particle emissions.
NASA’s DC-8 overlooked the Cascade Mountain range in northwestern United States as it headed to Everett, Washington on Oct. 10 to conduct research on aircraft condensation trails. The white peak of Mount Rainier glows in the distance beyond a foggy mountain landscape.
NASA / Jim Ross

Powered by WPeMatico

Get The Details…
Lillian Gipson

NASA’s Webb Stuns With New High-Definition Look at Exploded Star

NASA’s Webb Stuns With New High-Definition Look at Exploded Star

6 Min Read

NASA’s Webb Stuns With New High-Definition Look at Exploded Star

Cassiopeia A, a circular-shaped cloud of gas and dust with complex structure. The inner shell is made of bright pink and orange filaments studded with clumps and knots that look like tiny pieces of shattered glass. Around the exterior of the inner shell, particularly at the upper right, there are curtains of wispy gas that look like campfire smoke. The white smoke-like material also appears to fill the cavity of the inner shell, featuring structures shaped like large bubbles. Around and within the nebula, there are various stars seen as points of blue and white light. Outside the nebula, there are also clumps of yellow dust, with a particularly large clump at the bottom right corner that appears to have very detailed striations.

NASA’s James Webb Space Telescope’s new view of Cassiopeia A (Cas A)

Credits:
NASA, ESA, CSA, STScI, D. Milisavljevic (Purdue University), T. Temim (Princeton University), I. De Looze (University of Gent)

Mysterious features hide in near-infrared light

Like a shiny, round ornament ready to be placed in the perfect spot on a holiday tree, supernova remnant Cassiopeia A (Cas A) gleams in a new image from NASA’s James Webb Space Telescope. As part of the 2023 Holidays at the White House, First Lady of the United States Dr. Jill Biden debuted the first-ever White House Advent Calendar. To showcase the “Magic, Wonder, and Joy” of the holiday season, Dr. Biden and NASA are celebrating with this new image from Webb.

While all is bright, this scene is no proverbial silent night. Webb’s NIRCam (Near-Infrared Camera) view of Cas A displays this stellar explosion at a resolution previously unreachable at these wavelengths. This high-resolution look unveils intricate details of the expanding shell of material slamming into the gas shed by the star before it exploded.

Cas A is one of the most well-studied supernova remnants in all of the cosmos. Over the years, ground-based and space-based observatories, including NASA’s Chandra X-Ray Observatory, Hubble Space Telescope, and retired Spitzer Space Telescope have assembled a multiwavelength picture of the object’s remnant.

However, astronomers have now entered a new era in the study of Cas A. In April 2023, Webb’s MIRI (Mid-Infrared Instrument) started this chapter, revealing new and unexpected features within the inner shell of the supernova remnant. Many of those features are invisible in the new NIRCam image, and astronomers are investigating why.

Image: Cassiopeia A (NIRCam)

Cassiopeia A, a circular-shaped cloud of gas and dust with complex structure. The inner shell is made of bright pink and orange filaments studded with clumps and knots that look like tiny pieces of shattered glass. Around the exterior of the inner shell, particularly at the upper right, there are curtains of wispy gas that look like campfire smoke. The white smoke-like material also appears to fill the cavity of the inner shell, featuring structures shaped like large bubbles. Around and within the nebula, there are various stars seen as points of blue and white light. Outside the nebula, there are also clumps of yellow dust, with a particularly large clump at the bottom right corner that appears to have very detailed striations.
NASA’s James Webb Space Telescope’s new view of Cassiopeia A (Cas A) in near-infrared light is giving astronomers hints at the dynamical processes occurring within the supernova remnant. Tiny clumps represented in bright pink and orange make up the supernova’s inner shell, and are comprised of sulfur, oxygen, argon, and neon from the star itself. A large, striated blob at the bottom right corner of the image, nicknamed Baby Cas A, is one of the few light echoes visible NIRCam’s field of view. In this image, red, green, and blue were assigned to Webb’s NIRCam data at 4.4, 3.56, and 1.62 microns (F444W, F356W, and F162M, respectively).
NASA, ESA, CSA, STScI, D. Milisavljevic (Purdue University), T. Temim (Princeton University), I. De Looze (University of Gent)

‘Like Shards of Glass’

Infrared light is invisible to our eyes, so image processors and scientists translate these wavelengths of light to visible colors. In this newest image of Cas A, colors were assigned to different filters from NIRCam, and each of those colors hints at different activity occurring within the object.

At first glance, the NIRCam image may appear less colorful than the MIRI image. However, this simply comes down to the wavelengths in which the material from the object is emitting its light.

The most noticeable colors in Webb’s newest image are clumps represented in bright orange and light pink that make up the inner shell of the supernova remnant. Webb’s razor-sharp view can detect the tiniest knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself. Embedded in this gas is a mixture of dust and molecules, which will eventually become components of new stars and planetary systems. Some filaments of debris are too tiny to be resolved by even Webb, meaning they are comparable to or less than 10 billion miles across (around 100 astronomical units). In comparison, the entirety of Cas A spans 10 light-years across, or 60 trillion miles.

“With NIRCam’s resolution, we can now see how the dying star absolutely shattered when it exploded, leaving filaments akin to tiny shards of glass behind,” said Danny Milisavljevic of Purdue University, who leads the research team. “It’s really unbelievable after all these years studying Cas A to now resolve those details, which are providing us with transformational insight into how this star exploded.”

Image: Cassiopeia A NIRCam/MIRI

A comparison between two images, one on the left (labeled NIRCam), and on the right (labeled MIRI), separated by a white line. Both are a square image rotated clockwise about 45 degrees, with solid black in the top left, top right, bottom left, and bottom right corners. On the left, the image is a circular-shaped cloud of gas and dust with complex structure. The inner shell is made of bright pink and orange filaments that look like tiny pieces of shattered glass. Around the exterior of the inner shell are curtains of wispy gas that look like campfire smoke. The white smoke-like material also fills the cavity of the inner shell, with structures shaped like large bubbles. Outside the nebula, there are also clumps of yellow dust. On the right, is the same nebula in different light. The curtains of material outside the inner shell glow orange instead of white. The inner shell looks more mottled, and is a muted pink. At center right, a greenish loop extends from the right side of the ring into the central cavity.
This image provides a side-by-side comparison of supernova remnant Cassiopeia A (Cas A) as captured by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument). Objects in space reveal different aspects of their composition and behavior at different wavelengths. The outskirts of Cas A’s main inner shell, which appeared as a deep orange and red in the MIRI image, look like smoke from a campfire in the NIRCam image. The dust in the circumstellar material being slammed into by the shockwave is too cool to be detected directly at near-infrared wavelengths, but lights up in the mid-infrared. Also not seen in the near-infrared view is the loop of green light in the central cavity of Cas A that glows in mid-infrared, nicknamed the Green Monster by the research team.
NASA, ESA, CSA, STScI, D. Milisavljevic (Purdue University), T. Temim (Princeton University), I. De Looze (University of Gent)

Hidden Green Monster

When comparing Webb’s new near-infrared view of Cas A with the mid-infrared view, its inner cavity and outermost shell are curiously devoid of color.

The outskirts of the main inner shell, which appeared as a deep orange and red in the MIRI image, now look like smoke from a campfire. This marks where the supernova blast wave is ramming into surrounding circumstellar material. The dust in the circumstellar material is too cool to be detected directly at near-infrared wavelengths, but lights up in the mid-infrared.

Researchers say the white color is light from synchrotron radiation, which is emitted across the electromagnetic spectrum, including the near-infrared. It’s generated by charged particles traveling at extremely high speeds spiraling around magnetic field lines. Synchrotron radiation is also visible in the bubble-like shells in the lower half of the inner cavity.

Also not seen in the near-infrared view is the loop of green light in the central cavity of Cas A that glowed in mid-infrared, nicknamed the Green Monster by the research team. This feature was described as “challenging to understand” by researchers at the time of their first look.

While the ‘green’ of the Green Monster is not visible in NIRCam, what’s left over in the near-infrared in that region can provide insight into the mysterious feature. The circular holes visible in the MIRI image are faintly outlined in white and purple emission in the NIRCam image – this represents ionized gas. Researchers believe this is due to the supernova debris pushing through and sculpting gas left behind by the star before it exploded.

Image: Cassiopeia A Features

The image is split into 5 boxes. A large image at the left-hand side takes up most of the image. There are four images along the right-hand side in a column, labeled 1, 2, 3, and 4. The 4 images in the column are zoomed-in areas of the larger square image on the left. The image on the left has a circular-shaped cloud of gas and dust with complex structure, with an inner shell of bright pink and orange filaments that look like tiny pieces of shattered glass. A zoom-in of this material appears in the box labeled 1. Around the exterior of the inner shell in the main image there are wispy curtains of gas that look like campfire smoke. Within the cavity of the inner shell, there are small circular bubbles outlined in white. Box 2 is a zoom-in on these circles. Scattered outside the nebula in the main image, there are also clumps of yellow dust. Boxes 3 and 4 are zoomed-in areas of these clumps. Box 4 highlights a particularly large clump at the bottom right of the main image that is detailed and striated.
This image highlights several interesting features of supernova remnant Cassiopeia A as seen with Webb’s NIRCam (Near-Infrared Camera): NIRCam’s exquisite resolution is able to detect tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself; Circular holes visible in the MIRI image within the Green Monster are faintly outlined in white and purple emission in the NIRCam image; An example of a light echo – when light from the star’s long-ago explosion has reached, and is warming, distant dust, which is glowing as it cools down; A particularly intricate and large light echo, nicknamed Baby Cas A by researchers.
NASA, ESA, CSA, STScI, D. Milisavljevic (Purdue University), T. Temim (Princeton University), I. De Looze (University of Gent).

Baby Cas A

Researchers were also absolutely stunned by one fascinating feature at the bottom right corner of NIRCam’s field of view. They’re calling that large, striated blob Baby Cas A – because it appears like an offspring of the main supernova.

This is a light echo, where light from the star’s long-ago explosion has reached and is warming distant dust, which is glowing as it cools down. The intricacy of the dust pattern, and Baby Cas A’s apparent proximity to Cas A itself, are particularly intriguing to researchers. In actuality, Baby Cas A is located about 170 light-years behind the supernova remnant.

There are also several other, smaller light echoes scattered throughout Webb’s new portrait.

The Cas A supernova remnant is located 11,000 light-years away in the constellation Cassiopeia. It’s estimated to have exploded about 340 years ago from our point of view.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Hannah Braun hbraun@stsci.edu , Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

View/download a video tour of Cassiopeia A from the Space Telescope Science Institute.

Right click the images in this article to open a larger version in a new tab/window.

Related Information

Lifecycle of Stars

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Related For Kids

What is a supernova?

What is a nebula?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

Share

Details

Last Updated

Dec 10, 2023

Editor
Steve Sabia
Contact
Laura Betz

Powered by WPeMatico

Get The Details…
Steve Sabia

Students Create Elaborate Homemade Machines for JPL Competition

Students Create Elaborate Homemade Machines for JPL Competition

To compete in a race against the clock and each other, 18 student teams built complicated contraptions for the annual Invention Challenge at NASA’s Jet Propulsion Laboratory.

Some 250 students hauled homemade machines they’d spent weeks honing to NASA’s Jet Propulsion Laboratory in Southern California on Friday, Dec. 8, for the 24th annual JPL Invention Challenge.

The rules for the creative engineering competition change every year, but the overall goal is the same: Build a device capable of accomplishing a specified task within 60 seconds. This year, teams needed to come up with machines that could accomplish seven consecutive steps, ultimately dropping a crumpled piece of paper in a wastebasket. Students employed trebuchet catapults, crossbows, small motors, and “things with a bit of oomph,” said mechanical systems engineer Paul MacNeal, who has been organizing the competition since it began in 1998.

“The Mouse Trap game from when I was a little kid is what it’s patterned after,” MacNeal said, referring to the board game in which players would construct elaborate traps for each other’s plastic rodents. “It was such a tough competition this year. It’s almost like unfolding the James Webb Space Telescope: Every action has to go right.”

JPL’s Paul MacNeal started the Invention Challenge so that students could experience the fun of hands-on engineering and of STEM learning while developing team-building skills.
JPL’s Paul MacNeal started the Invention Challenge so that students could experience the fun of hands-on engineering and of STEM learning while developing team-building skills.
NASA/JPL-Caltech

And in this competition, fast. Every team that completed the task did so in under five seconds.

Team Pink, the winning student team from Oakwood High School in North Hollywood, California, sank its paper ball in the basket in just 1.25 seconds, using a launcher at the start to knock over a series of five dominoes. The last domino hit a switch that turned on a conveyor belt to push the paper ball into the basket.

“I was a little nervous at the beginning,” said Team Pink member and Oakwood High senior Midori Bonner. “There are a lot of good teams that were going really fast, but we’ve been training so hard for almost four months, I had faith in our team and the work we had put in.”

Team Roman Bridge from Los Angeles Senior High School and Team Green from Oakwood High School took second and third place, respectively.

Eighteen of the student teams competing in Friday’s finals had survived two regional events in November involving 40 school teams from Los Angeles and Orange counties. Four JPL-sponsored teams of professional engineers separately battled it out.

Having professional engineers compete is part of MacNeal’s larger goal of inspiring students: He started the free competition so that they could experience the fun of hands-on engineering and of STEM learning while developing team-building skills along the way. He provides participants with nothing but the rules; teams have to figure out the rest themselves.

“Even if they don’t do well, they worked hard to get where they were,” MacNeal said. “It’s just satisfying to see all the inventions they come up with.”

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

2023-179

Powered by WPeMatico

Get The Details…
Naomi Hartono

Annual Science Conference to Feature NASA Leadership, Research

Annual Science Conference to Feature NASA Leadership, Research

NASA Deputy Administrator Pam Melroy will discuss the agency’s Artemis program during her keynote remarks at the upcoming American Geophysical Union (AGU) 2023 annual meeting.
Credits: NASA

Annual Science Conference to Feature NASA Leadership, Research

NASA Deputy Administrator Pam Melroy will discuss the agency’s Artemis program during her keynote remarks in mid-December at the upcoming American Geophysical Union (AGU) 2023 annual meeting in San Francisco. Through Artemis, NASA will establish a long-term presence at the Moon for exploration and scientific discovery to understand more about the universe and our place in it as well as to prepare for a human mission to Mars.

Researchers from across the agency also will present findings throughout the week on Earth sciences, planetary science, and heliophysics beginning on Monday, Dec. 11. Melroy will help close out the conference with her remarks on Friday, Dec. 15.

New NASA science results from Mars, ice dynamics in Antarctica, and how to determine habitable zones for exoplanets, are among other topics. Throughout the conference, in-depth roundtable chats with NASA scientists discussing air pollution monitoring, NASA’s upcoming PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission, and the 2024 total eclipse in North America, also are set to take place.

Several AGU media events will feature NASA scientists.

News Briefings, Events with NASA Participation (All Times EST)

Monday, Dec. 11  

  • 4:30 p.m.: Media roundtable: The Heliophysics Big Year: Solar Eclipses, Exciting Missions, Collaborative Science, and More  
  • 6:30 p.m.: Media roundtable: Disappearing Solar Wind: New Results from NASA’s MAVEN (Mars Atmosphere and Volatile Evolution) Mission

Tuesday, Dec. 12  

  • 1 p.m.: Media availability: Mapping the World’s Water: New Satellite Provides Game-Changing Data 
  • 4:30 p.m.: Media briefing: 1000 Sols and Counting: Perseverance Rover’s Latest Science and Future Plans
  • 5:30 p.m.: Media availability: Monitoring the Air We Breathe from Space: How NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) Instrument Will Revolutionize Air Quality Forecasts

Wednesday, Dec. 13

  • 1 p.m.: Media availability: Earth Science at a Rapid PACE: A preview of NASA’s new ocean and atmospheres mission
  • 5:30 p.m.: Media availability: Understanding Open Science: NASA’s Role and Real-world Insights

Friday, Dec. 15

  • 4 p.m.: Melroy plenary speech discussing the Artemis program
  • 5 p.m.: Media availability with Melroy

Media can register on AGU’s website to participate in live briefings online. All briefings will be posted afterward on AGU’s YouTube channel.

For those attending the meeting, 50 hyperwall talks at the NASA Exhibit will highlight the current state of NASA Earth, planetary, and heliophysics science. In addition, 40 data demonstrations will highlight how to use NASA’s free and openly available data, NASA’s sea level rise portal, and HelioViewer’s imagery of our Sun.

For more information on NASA Earth and climate science, visit:

https://www.nasa.gov/earth

-end-

Karen Fox / Amber Jacobson
Headquarters, Washington
202-358-1600
karen.fox@nasa.gov / amber.c.jacobson@nasa.gov

Share

Details

Last Updated

Dec 08, 2023

Powered by WPeMatico

Get The Details…
Roxana Bardan