NASA to Provide Live Coverage of Crew-8 Return, Splashdown

NASA to Provide Live Coverage of Crew-8 Return, Splashdown

Members of NASA’s SpaceX Crew-8 mission from right to left, NASA astronauts Jeanette Epps, mission specialist; Matthew Dominick, commander; Michael Barratt, pilot; and Roscosmos cosmonaut Alexander Grebenkin, mission specialist; participate in the Crew Equipment Interface Test at Cape Canaveral Space Force Station in Florida on Friday, Jan. 12, 2024.
SpaceX

NASA and SpaceX are targeting no earlier than 7:05 a.m. EDT Sunday, Oct. 13, for the agency’s SpaceX Crew-8 mission to undock from the International Space Station. Pending weather conditions, the earliest splashdown time is targeted for 3:38 p.m. Monday, Oct. 14, at one of the multiple zones available off the coast of Florida.

NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin, are completing a seven-month science expedition aboard the orbiting laboratory and will return important and time-sensitive research to Earth.

Mission managers continue monitoring weather conditions in the area, as Dragon’s undocking depends on various factors, including spacecraft readiness, recovery team readiness, weather, sea states, and other factors. NASA will select a specific splashdown time and location closer to the Crew-8 spacecraft undocking.

Watch Crew-8 return activities on NASA+. Learn how to stream NASA content through a variety of additional platforms, including social media. For schedule information, visit:

https://www.nasa.gov/live

For the planned Oct. 13 undocking, NASA’s live return operations coverage is as follows (all times Eastern and subject to change based on real-time operations):

Sunday, Oct. 13

5 a.m. – Hatch closure coverage begins on NASA+

5:30 a.m. – Hatch closing

6:45 a.m. – Undocking coverage begins on NASA+

7:05 a.m. – Undocking

Following the conclusion of undocking, NASA coverage will switch to audio only.

Pending weather conditions at the splashdown sites, continuous coverage will resume Oct. 14, on NASA+ prior to the start of deorbit burn.

Monday, Oct. 14

2:30 p.m. – Return coverage begins on NASA+

2:53 p.m. – Deorbit burn (time is approximate)

3:38 p.m. – Splashdown (time is approximate)

5:15 p.m. – Return to Earth media teleconference with the following participants:

  • Richard Jones, deputy manager, NASA’s Commercial Crew Program
  • Bill Spetch, operations and integration manager, NASA’s International Space Station Program
  • William Gerstenmaier, vice president, Build & Flight Reliability, SpaceX

To participate in the teleconference, media must contact the NASA Johnson newsroom by 3 p.m. Oct. 14 at: jsccommu@mail.nasa.gov or 281-483-5111. To ask questions, media must dial in no later than 10 minutes before the start of the call. The agency’s media credentialing policy is available online.

Find full mission coverage, NASA’s commercial crew blog, and more information about the Crew-8 mission at:

https://www.nasa.gov/commercialcrew

-end-

Jimi Russell / Claire O’Shea
Headquarters, Washington
202-358-1100
james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov

Raegan Scharfetter / Sandra Jones
Johnson Space Center, Houston
281-483-5111
raegan.r.scharfetter@nasa.gov / sandra.p.jones@nasa.gov

Steve Siceloff / Danielle Sempsrott
Kennedy Space Center, Fla.
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov

Share

Details

Last Updated

Oct 11, 2024

Location
Kennedy Space Center

Powered by WPeMatico

Get The Details…
Roxana Bardan

Ancient Comet Makes Appearance

Ancient Comet Makes Appearance

A bright blue arc appears in the darkness of space. The comet streaks upward, almost perpendicular.
NASA/Matthew Dominick

NASA astronaut Matthew Dominick captured this timelapse photo of Comet C/2023 A3 (Tsuchinshan-ATLAS) from the International Space Station as it orbited 272 miles above the South Pacific Ocean southeast of New Zealand just before sunrise on Sept. 28, 2024. At the time, the comet was about 44 million miles away from Earth.

Though the comet is very old, it was just discovered in 2023, when it approached the inner solar system on its highly elliptical orbit for the first time in documented human history. Beginning in mid-October 2024, Comet C/2023 A3 (Tsuchinshan-ATLAS) will become visible low in the west following sunset. If the comet’s tail is well-illuminated by sunlight, it could be visible to the unaided eye. Oct. 14-24 is the best time to observe, using binoculars or a small telescope.

The comet hails from the Oort Cloud, which scientists think is a giant spherical shell surrounding our solar system. It is like a big, thick-walled bubble made of icy pieces of space debris the sizes of mountains and sometimes larger. The Oort Cloud lies far beyond Pluto and the most distant edges of the Kuiper Belt and may contain billions, or even trillions, of objects.

Image Credit: NASA/Matthew Dominick

Powered by WPeMatico

Get The Details…
Monika Luabeya

Pioneering NASA Astronaut Health Tech Thwarts Heart Failure

Pioneering NASA Astronaut Health Tech Thwarts Heart Failure

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Image of two engineers wearing white lab coats facing left. The engineer on the right is working on a computer, and the engineer on the left is looking through a microscope.
Dr. Rainee Simons (right) and Dr. Félix Miranda work together to create technology supporting heart health at NASA’s Glenn Research Center in Cleveland.
Credit: NASA

Prioritizing health is important on Earth, and it’s even more important in space. Exploring beyond the Earth’s surface exposes humans to conditions that can impact blood pressure, bone density, immune health, and much more. With this in mind, two NASA inventors joined forces 20 years ago to create a way to someday monitor astronaut heart health on long-duration spaceflight missions. This technology is now being used to monitor the health of patients with heart failure on Earth through a commercial product that is slated to launch in late 2024.

NASA inventors Dr. Rainee Simons, senior microwave communications engineer, and Dr. Félix Miranda, deputy chief of the Communications and Intelligent Systems Division, applied their expertise in radio frequency integrated circuits and antennas to create a miniature implantable sensor system to keep track of astronaut health in space. The technology, which was created at NASA’s Glenn Research Center in Cleveland with seed funds from the agency’s Technology Transfer Office, consists of a small bio-implanted sensor that can transmit a person’s health status from a sensor to a handheld device. The sensor is battery-less and wireless.

“You’re able to insert the sensor and bring it up to the heart or the aorta like a stent – the same process as in a stent implant,” Simons said. “No major surgery is needed for implantation, and operating the external handheld device, by the patient, is simple and easy.”

After Glenn patented the invention, Dr. Anthony Nunez, a heart surgeon, and Harry Rowland, a mechanical engineer, licensed the technology and founded a digital health medical technology company in 2007 called Endotronix, now an Edwards Lifesciences company. The company focuses on enabling proactive heart failure management with data-driven patient-to-physician solutions that detect dangers, based on the Glenn technology. The Endotronix primary monitoring system is called the Cordella Pulmonary Artery (PA) Sensor System. Dr. Nunez became aware of the technology while reading a technical journal that featured the concept, and he saw parallels that could be used in the medical technology industry.

The concept has proven to be an aid for heart failure management through several clinical trials, and patients have experienced improvements in their quality of life. Based on the outcome of Endotronix’s clinical testing to demonstrate safety and effectiveness, in June 2024 the U.S. Food and Drug Administration granted premarket approval to the Cordella PA Sensor System. The system is meant to help clinicians remotely assess, treat, and manage heart failure in patients at home with the goal of reducing hospitalizations.

“If you look at the statistics of how many people have congestive heart failure, high blood pressure… it’s a lot of people,” Miranda said. “To have the medical community saying we have a device that started from NASA’s intellectual property – and it could help people worldwide to be healthy, to enjoy life, to go about their business – is highly gratifying, and it’s very consistent with NASA’s mission to do work for the benefit of all.”

Powered by WPeMatico

Get The Details…
Kelly M. Matter

Controlled Propulsion for Gentle Landings 

Controlled Propulsion for Gentle Landings 

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Illustration of NASA’s Perseverance rover begins its descent through the Martian atmosphere
The controlled descent of the Mars Curiosity rover included the use of propulsion rockets pointing to the surface to allow a gentle landing. The engine, shown firing in this illustration of Perseverance and the sky crane landing system relied on a pyrovalve that released the rocket fuel.
Credit: NASA /JPL-Caltech

The Curiosity and Perseverance Mars rovers continue to provide a wealth of information about the Red Planet. This was made possible in part by the sky crane landing systems that safely lowered them to the planet’s surface. Their successful descent, managed by eight powerful engines, depended on one small part – a valve. 

The engines produced about 750 pounds of thrust each, so they required more fuel than a conventional valve could deliver, said Carl Guernsey, propulsion subsystem chief engineer for the Mars Sample Laboratory Mission. 

“With the engines pointing down, we throttle up and increase the thrust, so we slow down,” said Guernsey. “At a certain altitude above the surface, you hold at a constant velocity to collect more sensor data, and then proceed with the rest of the descent.”  

With only seconds for sensor data to identify the landing area and direct any last-minute diversion maneuvers, landing requires fuel available at the right time. To build the valve to help accomplish this task, NASA turned to a company that has provided the space program with reliable gas regulators since the 1950s. Through a series of mergers, by 2021, the original company, called Conax Florida, became part of Eaton based in Orchard Park, New York.  

Working under contract with NASA’s Jet Propulsion Laboratory in Southern California, the company developed a new one-time-use pyrovalve to sit between the hydrazine fuel tank and engines. The zero-leak valve was the largest ever made of its type at the time, at three-fourths of an inch. 

This one-time-use pyrovalve sat between the hydrazine fuel tank and the controlled-descent engines on the sky crane for the Curiosity and Perseverance Mars rovers. The zero-leak valve developed by Eaton also ensured no fuel was lost on the long flight to Mars.
Credit: Eaton Corp.

The Y-shaped pipe with a pair of leak-proof solid metal barriers prevented propellant from flowing. The valve contains a pyrotechnic charge that activates a piston called a flying ram, which shears off the barriers, allowing fuel to flow. But a problem arose during flight qualification testing. Sometimes the ram didn’t stay wedged in place at the bottom, posing a blockage risk. 

The solution the team came up with had never been tried before – magnets at the bottom of the valve. But the successful Perseverance landing in 2021 proved it works. The same valve is included in the Perseverance rover and now enables commercial rocket-stage separation in space. 

Share

Details

Last Updated

Oct 11, 2024

Powered by WPeMatico

Get The Details…
Andrew Wagner

Program Executive Dr. Yaítza Luna-Cruz

Program Executive Dr. Yaítza Luna-Cruz

Yaíta smiles broadly at the camera wearing a white dress with a pearl necklace. Her hair is long with curls and she's wearing red lipstick. She stands in front of a larger model of a globe.

“My mom had to leave school after 9th grade to support her family, but she always emphasized the importance of education. And with a lot of sacrifices, got us an encyclopedia in Spanish, ‘Enciclopedia de Las Ciencias’. By getting that encyclopedia for us, without knowing it, my mom was my first mentor because she introduced me to science. So that’s what helped fall in love with physics.

“I was the first of many things. I was the only one in my whole class that decided to study physics at the University of Puerto Rico at Mayagüez. I was the first master student to do a thesis related to atmospheric physics. There was no atmospheric sciences and meteorology in Puerto Rico, I saw the need and potential, so I started the first student chapter of the American Meteorological Society in Puerto Rico. I was the first one to get a PhD in atmospheric physics from the program and there have been so many firsts since then. 

“I’m leading by example. I don’t want the people who look like me to experience what I experienced because I was alone many times. And there’s a saying that says you cannot be what you can’t see.

“So, I’m not just doing science. I’m doing Science with Purpose, and my purpose is to be the voice for those who are underrepresented in science, open doors and opportunities and help them understand that they have a space in science.”

– Dr. Yaíta Luna-Cruz, Program Executive, Earth Science Division, NASA Headquarters

Image Credit: NASA/Keegan Barber
Interviewer: NASA/Jessica Salani

Lee esta historia en español aquí.

Check out some of our other Faces of NASA. 

Powered by WPeMatico

Get The Details…
Tahira S. Allen