NASA’s ELaNa 43 Prepares for Firefly Aerospace Launch

NASA’s ELaNa 43 Prepares for Firefly Aerospace Launch

A Satellite for Optimal Control and Imaging (SOC-i) CubeSat awaits integration at Firefly’s Payload Processing Facility at Vandenberg Space Force Base, California on Thursday, June 6, 2024. SOC-i, along with several other CubeSats, will launch to space on an Alpha rocket during NASA’s Educational Launch of Nanosatellites (ELaNa) 43 mission as part of the agency’s CubeSat Launch Initiative and Firefly’s Venture-Class Launch Services Demonstration 2 contract.
NASA

NASA is readying for the launch of several small satellites to space, built with the help of students, educators, and researchers from across the country, as part of the agency’s CubeSat Launch Initiative.

The ELaNa 43 (Educational Launch of Nanosatellites 43) mission includes eight CubeSats flying on Firefly Aerospace’s Alpha rocket for its “Noise of Summer” launch from Space Launch Complex-2 at Vandenberg Space Force Base, California. The 30-minute launch window will open at 9 p.m. PDT Wednesday, June 26 (12 a.m. EDT Thursday, June 27).

NASA’s CubeSat Launch Initiative (CSLI) is an ongoing partnership between the agency, educational institutions, and nonprofits, providing a path to space for educational small satellite missions. For the ELaNa 43 mission, each satellite is stored in a CubeSat dispenser on the Firefly rocket and deployed once it reaches sun-synchronous or nearly polar orbit around Earth.

CubeSats are built using standardized units, with one unit, or 1U, measuring about 10 centimeters in length, width, and height. This standardization in size and form allows universities and other researchers to develop cost-effective science investigations and technology demonstrations.

Read more about the small satellites launching on ELaNa 43:

CatSat – University of Arizona, Tucson

CatSat, a 6U CubeSat with a deployable antenna inside a Mylar balloon, will test high-speed communications. Once the CatSat reaches orbit, it will inflate to transmit high-definition Earth photos to ground stations at 50 megabits per second, more than five times faster than typical home internet speeds.

The CatSat design inspiration came to Chris Walker after covering a pot of pudding with plastic wrap. The CatSat principal investigator and professor of Astronomy at University of Arizona noticed the image of an overhanging light bulb created by reflections off the concave plastic wrap on the pot.

“This observation eventually led to the Large Balloon Reflector, an inflatable technology that creates large collecting apertures that weigh a fraction of today’s deployable antennas,” said Walker. The Large Balloon Reflector was an early-stage study developed through NASA’s Innovative Advanced Concepts program.

KUbeSat-1 – University of Kansas, Lawrence

The KUbeSat-1, a 3U CubeSat, will use a new method to measure the energy and type of primary cosmic rays hitting the Earth, which is traditionally done on Earth. The second payload, the High-Altitude Calibration will measure very high frequency signals generated by cosmic interactions with the atmosphere. KUbeSat-1 is Kansas’ first small satellite to launch under NASA’s CSLI.

MESAT-1 – University of Maine, Orono

MESAT-1, a 3U CubeSat, will study local temperatures across city and rural areas to determine phytoplankton concentration in bodies of water to help predict algal blooms.  MESAT-1 is Maine’s first small satellite to launch under NASA’s CSLI.

R5-S4, R5-S2-2.0 ­­­­­- NASA’s Johnson Space Center

R5-S4 and R5-S2-2.0, both 6U CubeSats, will be the first R5 spacecraft launched to orbit to test a new, lean spacecraft build. The team will monitor how each part of the spacecraft performs, including the computer, software, radio, propulsion system, sensors, and cameras in low Earth orbit.

NASA and Firefly Aerospace engineers review the integration plan for the agency’s CubeSat R5 Spacecraft 4 (R5-S4) at Firefly Aerospace’s Payload Processing Facility at Vandenberg Space Force Base, California on Wednesday, April 24, 2024.
NASA/Jacob Nunez-Kearny

“In the near term, R5 hopes to demonstrate new processes that allows for faster and cheaper development of high-performance CubeSats,” said Sam Pedrotty, R5 project manager at NASA’s Johnson Space Center in Houston. “The cost and schedule improvements will allow R5 to provide higher-risk ride options to low-Technology Readiness Levels payloads so more can be demonstrated on-orbit.”

Serenity Teachers in Space

Serenity, a 3U CubeSat equipped with data sensors and a camera, will communicate with students on Earth through amateur radio signals and send back images. Teachers in Space launches satellites as educational experiments to stimulate interest in space science, technology, engineering, and math among students in North America.

SOC-i University of Washington, Seattle

Satellite for Optimal Control and Imaging (SOC-i), a 2U CubeSat, is a technology demonstration mission of attitude control technology used to maintain its orientation in relation to the Earth, Sun, or other body. This mission will test an algorithm to support autonomous operations with constrained attitude guidance maneuvers computed in real-time aboard the spacecraft. SOC-i will autonomously rotate its camera to capture images.

TechEdSat-11 (TES-11) – NASA’s Ames Research Center, California’s Silicon Valley

TES-11, a 6U CubeSat, is a collaborative effort between NASA researchers and students to evaluate technologies for use in small satellites. It’s part of ongoing experiments to evaluate new technologies in communications, a radiation sensor suite, and experimental solar panels, as well as to find ways to reduce the time to de-orbit.

NASA awarded Firefly Aerospace a fixed-price contract to fly small satellites to space under a Venture-Class Launch Services Demonstration 2 contract in 2020. NASA certified Firefly Aerospace’s Alpha rocket as a Category 1 in May, which authorized its use during missions with high risk tolerance.

NASA’s Launch Services Program is responsible for launching rockets delivering spacecraft that observe Earth, visit other planets, and explore the universe.

Follow NASA’s small satellite missions blog for launch updates.

Powered by WPeMatico

Get The Details…
Elyna N. Niles-Carnes

NASA Invites Public to Share Excitement of NOAA GOES-U Launch

NASA Invites Public to Share Excitement of NOAA GOES-U Launch

Crews transport NOAA’s (National Oceanic and Atmospheric Administration) Geostationary Operational Environmental Satellite (GOES-U) from the Astrotech Space Operations facility to the SpaceX hangar at Launch Complex 39A at NASA’s Kennedy Space Center in Florida beginning on Friday, June 14, 2024, with the operation finishing early Saturday, June 15, 2024.
NASA/Ben Smegelsky

NASA invites the public to participate in virtual activities and events leading up to the launch of the NOAA (National Oceanic and Atmospheric Administration) GOES-U (Geostationary Operational Environmental Satellite-U) mission. 

NASA is targeting a two-hour window opening at 5:16 p.m. EDT Tuesday, June 25, for the launch of the weather satellite aboard a SpaceX Falcon Heavy rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida. 

Live launch coverage will begin at 4:15 p.m. and will air on NASA+, the agency’s website, and other digital channels. Learn how to stream NASA TV through a variety of platforms. 

As the fourth and final satellite in NOAA’s GOES-R Series, GOES-U will enhance meteorologists’ ability to provide advanced weather forecasting and warning capabilities. GOES-U also will improve the detection and monitoring of space weather hazards using a new compact coronagraph instrument. 

Members of the public can register to attend the launch virtually. As a virtual guest, you will have access to curated resources, schedule changes, and mission-specific information delivered straight to your inbox. Following each activity, virtual guests will receive a commemorative stamp for their virtual guest passport

Stay updated on the mission by following NASA’s GOES blog: 

https://blogs.nasa.gov/goes/

Powered by WPeMatico

Get The Details…
Amanda S. Vozeh

Contracts and Acquisition Integrity Law

Contracts and Acquisition Integrity Law

About

In its functional leadership role, the Contracts and Acquisition Integrity Law Practice Group supports policy-level interactions with other elements of Government; provides specialized guidance and advice to the Offices of the General Counsel at NASA Field Centers regarding contract award, administration and litigation matters; and develops and coordinates NASA legal policy in these areas. 

As a functional office to the NASA Administrator, the Contracts and Acquisition Integrity Law Practice Group provides legal advice regarding Headquarters-level contract selection, administration and termination decisions; drafts or comments on proposed legislation, regulations and executive orders; represents NASA in interagency meetings or bodies such as the Defense Acquisition Regulation (DAR) Council; and answers correspondence for the Administrator concerning contractual matters. 

The Contracts and Acquisition Integrity Law Practice Group provides central services to organizations within NASA, principally legal advice and counsel to the NASA Office of Procurement and other Headquarters Offices regarding the statutes, regulations and policies governing Federal Government contracting. Central services provided by the Practice Group also include representing the agency in bid protests and contract-related litigation before the Government Accountability Office (GAO), the Court of Federal Claims (COFC), and the United States District Courts; disputes before the Armed Services Board of Contract Appeals (ASBCA); and, ultimately, any appeals of these decisions to the United States Courts of Appeals, including the Court of Appeals for the Federal Circuit.

Contacts

Associate General Counsel:
Scott Barber 

Deputy Associate General Counsel:
Tory Kauffman 

Tel: 202-358-4455

Director, Acquisition Integrity Program:
Monica Aquino-Thieman 

Paralegal Specialist:
Rhonda Moss

Attorney Staff:
Michael Anderson
Young Cho
Allison Genco
Jennifer Howard
Victoria Kauffman
Stephen O’Neal
Vincent Salgado
Jessica Sitron
Adam Supple
Robert Vogt

Organization and Leadership

Headquarters OGC Organization

OGC Leadership Directory— Contact Information for the Headquarters Leadership and Center Chief Counsels

Resources

OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer.

Powered by WPeMatico

Get The Details…
Bill Keeter

Acquisition Integrity Program

Acquisition Integrity Program

In its functional leadership role, the Acquisition and Integrity Program (AIP) supports policy-level interactions with other governmental agencies combating procurement fraud. This Program provides specialized guidance and advice to the Office of the Chief Counsel at NASA Field Centers regarding procurement fraud matters; advises on affirmative litigation in the recovery of monies resulting from fraudulent activity on behalf of the Agency; and develops and coordinates NASA legal policy in these areas.

As a functional office to the NASA Administrator, the Acquisition Integrity Program provides legal advice regarding suspected fraud and other related irregularities in the acquisition process, suspected criminal standards of conduct violations, suspension and debarment decisions, and administrative agreements; represents NASA in interagency meetings or bodies such as the Department of Defense Procurement Fraud Working Group, and the Interagency Suspension and Debarment Committee; answers correspondence for the Administrator concerning acquisition integrity matters; and responds to Congressional inquiries and proposed Federal Acquisition Regulation rules concerning procurement fraud related issues.

The Acquisition Integrity Program provides centralized services to organizations within NASA regarding the statutes, regulations, and policies governing fraud. The Program is responsible for ensuring that significant allegations of fraud on NASA contracts, grants, cooperative agreements, funding instruments, and other commitments of NASA, are identified, investigated, and prosecuted. Centralized services provided by the Program also include: case referrals for investigation; interface with investigative agencies, U.S. Attorney’s Offices, and the Justice Department; coordination of criminal, civil, contractual, and administrative remedies; Suspension and Debarment recommendations and corresponding Administrative Agreements; education and training of the NASA workforce to prevent, detect, and deter procurement fraud; and educational outreach to the private sector on procurement fraud related issues.

Contacts

Director:
Monica Aquino-Thieman

Tel: 202-358-2262

Management and Program Analyst:
Laura Donegan

Attorney Staff:
Robert Vogt, Western Region Coordinator
Vacant, Central Region Coordinator
Vacant, Eastern Region Coordinator

Organization and Leadership

Headquarters OGC Organization
OGC Leadership Directory— Contact Information for the Headquarters Leadership and Center Chief Counsels

Resources

Fraud Awareness Flyer

OGC Disclaimer: The materials within this website do not constitute legal advice. For details read our disclaimer.

Powered by WPeMatico

Get The Details…
NASA

Coordinating an Airborne Lab Across the Globe with NASA’s Earth Science Project Office

Coordinating an Airborne Lab Across the Globe with NASA’s Earth Science Project Office

ASIA-AQ DC-8 aircraft flies over Bangkok, Thailand to monitor seasonal haze from fire smoke and urban pollution. Photo credit: Rafael Luis Méndez Peña.

Tracking the spread of harmful air pollutants across large regions requires aircraft, satellites, and diverse team of scientists. NASA’s global interest in the threat of air pollution extends into Asia, where it works with partners on the Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ).  This international mission integrates satellite data and aircraft measurements with local air quality ground monitoring and modeling efforts across Asia.

Orchestrating a mission of this scale requires complicated agreements between countries, the coordination of aircraft and scientific instrumentation, and the mobilization of scientists from across the globe. To make this possible, ARC’s Earth Science Project Office (ESPO) facilitated each phase of the campaign, from site preparation and aircraft deployment to sensitive data management and public outreach.

“Successfully meeting the ASIA-AQ mission logistics requirements was an incredible effort in an uncertainty-filled environment and a very constrained schedule to execute and meet those requirements,” explains ASIA-AQ Project Manager Jhony Zavaleta. “Such effort drew on the years long experience on international shipping expertise, heavy equipment operations, networking and close coordination with international service providers and all of the U.S. embassies at each of our basing locations.”

Map of planned ASIA-AQ operational regions for 2020.
Map of planned ASIA-AQ operational regions. Yellow circles indicate the original areas of interest for flight sampling. The overlaid colormap shows annual average nitrogen dioxide (NO2) concentrations observed by the TROPOMI satellite with red colors indicating the most polluted locations.

Understanding Air Quality Globally

ASIA-AQ benefits our understanding of air quality and the factors controlling its daily variability by investigating the ways that air quality can be observed and quantified. The airborne measurements collected during the campaign are directly integrated with existing satellite observations of air quality, local air quality monitoring networks, other available ground assets, and models to provide a level of detail otherwise unavailable to advance understanding of regional air quality and improve future integration of satellite and ground monitoring information.

ESPO’s Mission-Critical Contributions

  • Facilitating collaboration between governmental agencies and the academic community by executing project plans, navigating bureaucratic hurdles, and consensus building.
  • Mission planning for two NASA aircraft. AFRC DC-8 completed 16 science flights, totaling 125 flight hours. The LaRC GIII completed 35 science flights, totaling 157.7 flight hours.
  • Enabling international fieldwork and workforce mobilization by coordinating travel, securing authorizations and documentation, and maintaining relationships with local research partners.
  • Managing outreach to local governments and schools. ASIA-AQ team members showcased tools used for air quality science to elementary/middle/high school students. Recent news feature here.
View of ASIA-AQ aircraft in Bangkok, Thailand. ESPO staff from left to right: Dan Chirica, Marilyn Vasques, Sam Kim, Jhony Zavaleta, and Andrian Liem. Aircraft from left to right: Korean Meteorological Agency/National Institute of Meteorological Sciences, NASA LaRC GIII, NSASA DC-8, (2) Hanseo University, Sunny Air (private aircraft contracted by Korean Meteorological Agency). Photo: Rafael Mendez Peña.

The flying laboratory of NASA’s DC-8

NASA flew its DC-8 aircraft, picture above, equipped with instrumentation to monitor the quality, source, and movement of harmful air pollutants. Scientists onboard used the space as a laboratory to analyze data in real-time and share it with a network of researchers who aim to tackle this global issue.

“Bringing the DC-8 flying laboratory and US researchers to Asian countries not only advances atmospheric research but also fosters international scientific collaboration and education,” said ESPO Project Specialist Vidal Salazar. “Running a campaign like ASIA AQ also opens doors for shared knowledge and exposes local communities to cutting-edge research.”

Fostering Partnerships Through Expertise and Goodwill

International collaboration fostered through this campaign contributes to an ongoing dialogue about air pollution between Asian countries.

“NASA’s continued scientific and educational activities around the world are fundamental to building relationships with partnering countries,” said ESPO Director Marilyn Vasques. “NASA’s willingness to share data and provide educational opportunities to locals creates goodwill worldwide.”

The role of ESPO in identifying, strategizing, and executing on project plans across the globe created a path for multi-sectoral community engagement on air quality. These global efforts to improve air quality science directly inform efforts to save lives from this hazard that affects all.

Powered by WPeMatico

Get The Details…
Aaron McKinnon