Webb Study Reveals Rocky Planets Can Form in Extreme Environments

Webb Study Reveals Rocky Planets Can Form in Extreme Environments

5 Min Read

Webb Study Reveals Rocky Planets Can Form in Extreme Environments

The image is dominated by a dusty disk extending from upper left to lower right and tilted toward the viewer. It resembles patchy clouds with small rocky bits scattered throughout. At 4 o’clock and 11 o’clock are two small, embedded planets. The outer edges of the disk are reddish, the middle orange, and the inner region yellow-white. At the center is a gap within which is a bright white star.

An international team of astronomers has used NASA’s James Webb Space Telescope to provide the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought. 

Image: Protoplanetary Disk (Artist Concept)

The image is dominated by a dusty disk extending from upper left to lower right and tilted toward the viewer. It resembles patchy clouds with small rocky bits scattered throughout. At 4 o’clock and 11 o’clock are two small, embedded planets. The outer edges of the disk are reddish, the middle orange, and the inner region yellow-white. At the center is a gap within which is a bright white star.
This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming.
ESO/L. Calçada

These are the first results from the eXtreme Ultraviolet Environments (XUE) James Webb Space Telescope program, which focuses on the characterization of planet-forming disks (vast, spinning clouds of gas, dust, and chunks of rock where planets form and evolve) in massive star-forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is important for scientists to gain insights into the diversity of the different types of exoplanets.

The XUE program targets a total of 15 disks in three areas of the Lobster Nebula (also known as NGC 6357), a large emission nebula roughly 5,500 light-years away from Earth in the constellation Scorpius. The Lobster Nebula is one of the youngest and closest massive star-formation complexes, and is host to some of the most massive stars in our galaxy. Massive stars are hotter, and therefore emit more ultraviolet (UV) radiation. This can disperse the gas, making the expected disk lifetime as short as a million years. Thanks to Webb, astronomers can now study the effect of UV radiation on the inner rocky-planet forming regions of protoplanetary disks around stars like our Sun.

“Webb is the only telescope with the spatial resolution and sensitivity to study planet-forming disks in massive star-forming regions,” said team lead María Claudia Ramírez-Tannus of the Max Planck Institute for Astronomy in Germany.

Astronomers aim to characterize the physical properties and chemical composition of the rocky-planet-forming regions of disks in the Lobster Nebula using the Medium Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This first result focuses on the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24.

“Only the MIRI wavelength range and spectral resolution allow us to probe the molecular inventory and physical conditions of the warm gas and dust where rocky planets form,” added team member Arjan Bik of Stockholm University in Sweden.

Image: XUE 1 spectrum detects water

Graphic titled “XUE 1 Irradiated Protoplanetary Disk, MIRI Medium -Resolution Spectroscopy” shows a graph of brightness versus wavelength from 13.3 to 15.5 microns, with acetylene, hydrogen cyanide, water, and carbon dioxide peaks highlighted.
This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. The inner disk around XUE 1 revealed signatures of water (highlighted here in blue), as well as acetylene (C2H2, green), hydrogen cyanide (HCN, brown), and carbon dioxide (CO2, red). As indicated, some of the emission detected was weaker than some of the predicted models, which might imply a small outer disk radius.
NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI)

Due to its location near several massive stars in NGC 6357, scientists expect XUE 1 to have been constantly exposed to high amounts of ultraviolet radiation throughout its life. However, in this extreme environment the team still detected a range of molecules that are the building blocks for rocky planets.

“We find that the inner disk around XUE 1 is remarkably similar to those in nearby star-forming regions,” said team member Rens Waters of Radboud University in the Netherlands. “We’ve detected water and other molecules like carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene. However, the emission found was weaker than some models predicted. This might imply a small outer disk radius.”

“We were surprised and excited because this is the first time that these molecules have been detected under these extreme conditions,” added Lars Cuijpers of Radboud University. The team also found small, partially crystalline silicate dust at the disk’s surface. This is considered to be the building blocks of rocky planets. 

These results are good news for rocky planet formation, as the science team finds that the conditions in the inner disk resemble those found in the well-studied disks located in nearby star-forming regions, where only low-mass stars form. This suggests that rocky planets can form in a much broader range of environments than previously believed.

Image: XUE 1 Spectrum detects CO

Graphic titled “XUE 1 Irradiated Protoplanetary Disk, MIRI Medium -Resolution Spectroscopy” shows a graph of brightness versus wavelength from 4.95 to 5.15 microns, with carbon monoxide peaks highlighted.
This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. It features the observed signatures of carbon monoxide spanning 4.95 to 5.15 microns.
NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI)

The team notes that the remaining observations from the XUE program are crucial to establish the commonality of these conditions.

“XUE 1 shows us that the conditions to form rocky planets are there, so the next step is to check how common that is,” said Ramírez-Tannus. “We will observe other disks in the same region to determine the frequency with which these conditions can be observed.”

These results have been published in The Astrophysical Journal.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov, Rob Gutrorob.gutro@nasa.gov
NASA’s  Goddard Space Flight Center, Greenbelt, Md.

Bethany Downer –  Bethany.Downer@esawebb.org
ESA/Webb Chief Science Communications Officer

Christine Pulliam cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

Research results published in The Astrophysical Journal.

Related Information

Terrestrial Exoplanets

Exoplanets 101

LIfe and Death of a Planetary System

Webb Mission – https://science.nasa.gov/mission/webb/

Webb News – https://science.nasa.gov/mission/webb/latestnews/

Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Related For Kids

What is a Planet?

What is an Exoplanet?

How Many Solar Systems are in our Galaxy?

What Is a Galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

Ciencia de la NASA

NASA en español 

Space Place para niños

Share

Details

Last Updated

Nov 30, 2023

Editor
steve sabia
Contact
Laura Betz

Powered by WPeMatico

Get The Details…
steve sabia

Deputy for Electrified Aircraft Propulsion Integration Joe Connolly

Deputy for Electrified Aircraft Propulsion Integration Joe Connolly

“The goal is to get as many of the wrong ideas out of the way as early as possible. 

“So we’ll come up with some idea, especially on the research side, and sometimes it will seem really brilliant on the napkin or in a conversation with one other person. 

“[When I started working on electric aircraft propulsion,] I was not familiar with all of the electrical ins and outs. I thought power would just be available, and I could use it when I wanted it. [Our concepts had] all these little hiccups — how they get integrated in the real system, how the battery systems are going to interplay, and all the extra safety things that we need to consider—they allowed us to figure out things a little bit earlier and [give us] a broader perspective.

“The key thing is that when you’re working on something that’s really hard, I think the whole expectation is that you’re going to fail. So we try to fail as many times as we can early on. So when we’re getting closer to an actual demonstration, we’re pretty confident that at that point, we’ve talked to the right people, everyone’s on board, and we’re going to have a safe, larger test campaign.

“It’s always better to fail earlier on and learn as much as you can.”

— Joe Connolly, Deputy for Electrified Aircraft Propulsion Integration, Glenn Research Center

Image Credit: NASA / Jef Janis
Interviewer: NASA / Thalia Patrinos

Check out some of our other Faces of NASA.

Powered by WPeMatico

Get The Details…
Thalia K. Patrinos

Discovery Alert: Watch the Synchronized Dance of a 6-Planet System

Discovery Alert: Watch the Synchronized Dance of a 6-Planet System

Discovery Alert: Watch the Synchronized Dance of a 6-Planet System

The discovery: Six planets orbit their central star in a rhythmic beat, a rare case of an “in sync” gravitational lockstep that could offer deep insight into planet formation and evolution.

Key facts: A star smaller and cooler than our Sun hosts a truly strange family of planets: six “sub-Neptunes” – possibly smaller versions of our own Neptune – moving in a cyclic rhythm. This orbital waltz repeats itself so precisely it can be readily set to music.

This animation shows six “sub-Neptune” exoplanets in rhythmic orbits around their star – with a musical tone as each planet passes a line drawn through the system. The line is where the planets cross in front of (transit) their star from Earth’s perspective. In these rhythms, known as “resonance,” the innermost planet makes three orbits for every two of the next planet out. Among the outermost planets, a pattern of four orbits for every three of the next planet out is repeated twice.
Animation credit: Dr. Hugh Osborn, University of Bern

Details: While multi-planet systems are common in our galaxy, those in a tight gravitational formation known as “resonance” are observed by astronomers far less often. In this case, the planet closest to the star makes three orbits for every two of the next planet out – called a 3/2 resonance – a pattern that is repeated among the four closest planets.

Among the outermost planets, a pattern of four orbits for every three of the next planet out (a 4/3 resonance) is repeated twice. And these resonant orbits are rock-solid: The planets likely have been performing this same rhythmic dance since the system formed billions of years ago. Such reliable stability means this system has not suffered the shocks and shakeups scientists might typically expect in the early days of planet formation – smash-ups and collisions, mergers and breakups as planets jockey for position. And that, in turn, could say something important about how this system formed. Its rigid stability was locked in early; the planets’ 3/2 and 4/3 resonances are almost exactly as they were at the time of formation. More precise measurements of these planets’ masses and orbits will be needed to further sharpen the picture of how the system formed.

Fun facts: The discovery of this system is something of a detective story. The first hints of it came from NASA’s TESS (the Transiting Exoplanet Survey Satellite), which tracks the tiny eclipses – the “transits” – that planets make as they cross the faces of their stars. Combining the TESS measurements, made in separate observations two years apart, revealed an assortment of transits for the host star, called HD 110067. But it was difficult to distinguish how many planets they represented, or to pin down their orbits.

Eventually, astronomers singled out the two innermost planets, with orbital periods – “years” – of 9 days for the closest planet, 14 days for the next one out. A third planet, with a year about 20 days long, was identified with the help of data from CHEOPS, The European Space Agency’s CHaracterising ExOPlanets Satellite.

Then the scientists noticed something extraordinary. The three planets’ orbits matched what would be expected if they were locked in a 3/2 resonance. The next steps were all about math and gravity. The science team, led by Rafael Luque of the University of Chicago, worked through a well-known list of resonances that potentially could be found in such systems, trying to match them to the remaining transits that had been picked up by TESS. The only resonance chain that matched up suggested a fourth planet in the system, with an orbit about 31 days long. Two more transits had been seen, but their orbits remained unaccounted for because they were only single observations (more than one transit observation is needed to pin down a planet’s orbit). The scientists again ran through the list of possible orbits if there were two additional, outer planets that fit the expected chain of resonances across the whole system. The best fit they found: a fifth planet with a 41-day orbit, and a sixth just shy of 55.

At this point the science team almost hit a dead end. The slice of the TESS observations that had any chance of confirming the predicted orbits of the two outer planets had been set aside during processing. Excessive light scattered through the observation field by Earth and the Moon seemed to make them unusable. But not so fast. Scientist Joseph Twicken, of the SETI Institute and of the NASA Ames Research Center, took notice of the scattered light problem. He knew that scientist David Rapetti, also of Ames and of the Universities Space Research Association, happened to be working on a new computer code to recover transit data thought to be lost because of scattered light. At Twicken’s suggestion, Rapetti applied his new code to the TESS data. He found two transits for the outer planets – exactly where the science team led by Luque had predicted.

The discoverers: An international team of researchers led by Rafael Luque, of the University of Chicago, published a paper online on the discovery, “A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067,” in the journal Nature on Nov. 29.

An illustration shows a planetary orrery of six colorful exoplanets around their star. There is also a key showing planetary pairs and how their orbits are time in a resonance. The planets' s paths are shown in colorful lines of synchronization.
Tracing a link between two neighbour planet at regular time interval along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system create together a mesmerising geometric pattern due to their resonance-chain.
Credit: Thibaut Roger/NCCR PlanetS, CC BY-NC-SA 4.0

Powered by WPeMatico

Get The Details…

The Marshall Star for November 29, 2023

The Marshall Star for November 29, 2023

15 Min Read

The Marshall Star for November 29, 2023

From left, Artemis II astronauts Jeremy Hansen, Christina Koch, and Victor Glover listen as Commander Reid Wiseman talks during an employee event at NASA’s Marshall Space Flight Center on Nov. 27.

Artemis II Crew Enjoys Visit with Marshall Team Members

By Wayne Smith

From talking about continuing the legacy of NASA’s Marshall Space Flight Center in space exploration to describing their roles in an upcoming historic mission, Artemis II astronauts enjoyed visiting with center team members Nov. 27.

The crew will be the first to ride aboard NASA’s SLS (Space Launch System) rocket and Orion spacecraft. They will launch atop the rocket to venture around the Moon on Artemis II, the first crewed flight for Artemis. Their mission around the Moon will verify capabilities for humans to explore deep space and pave the way for long-term exploration and science on the lunar surface. Marshall manages the SLS Program.

From left, Artemis II astronauts Jeremy Hansen, Christina Koch, and Victor Glover listen as Commander Reid Wiseman talks during an employee event at NASA’s Marshall Space Flight Center on Nov. 27.
From left, Artemis II astronauts Jeremy Hansen, Christina Koch, and Victor Glover listen as Commander Reid Wiseman talks during an employee event at NASA’s Marshall Space Flight Center on Nov. 27.
NASA/Charles Beason

The four-member crew answered questions from a standing-room only crowd for about an hour inside Activities Building 4316 before taking photos with Marshall team members. The crew consists of NASA astronauts Reid Wiseman, who will be the Artemis II commander, Victor Glover (pilot) and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist).

They even took the time to send a personalized Christmas greeting to the grandmother of Corey Walker, an atmospheric science programmer at Marshall with Jacobs, who said it would be the perfect gift for her. During the question and answer portion of the event, the astronauts had Walker join them on stage and made a short greeting for his grandmother, Brenda Lowery, who lives on Sand Mountain.

“I can’t wait to give this to her because she loves the space program,” Walker said. “She was young when the astronauts went to the Moon the first time. She has lots of mementos at her house of the space program.”

After acting Center Director Joseph Pelfrey welcomed team members to the event, SLS Program Manager John Honeycutt talked about Marshall’s reputation of excellence in rocket propulsion and the success of Artemis I before introducing the astronauts.

Glover, third from left, makes a point during the Artemis II crew event with Marshall team members.
Glover, third from left, makes a point during the Artemis II crew event with Marshall team members.
NASA/Charles Beason

“Since the beginning, NASA astronauts have launched on historic missions and on rockets designed, developed, and built right here at Marshall Space Flight Center and our Michoud Assembly Facility,” Honeycutt said. “… It seems only fitting that when a new era of human space flight launches on a rocket developed here, that that’s the way it should be. We’ve been entrusted not just with an incredibly powerful and capable rocket, but with the lives of four astronauts. Their safety and return are chief among our responsibilities.”

Wiseman acknowledged Marshall’s rocket excellence, but also pointed out the center’s role in research for future missions to the Moon and working in the lunar environment. The Payload Operations Integration Center at Marshall is the control center for scientific operations on the International Space Station.

“(Marshall) means a lot more to us than getting us off this planet,’ Wiseman said. “It’s also our human research side when we are off the planet. When we are working sustainably in the lunar area, and we see humans on Mars, it’s built on the shoulders of POIC (Payload Operations Integration Center), of human research in orbit. That is the bread and butter of what we’re doing. We’re launching humans and living in space, and that is built right here at Marshall.”

Glover, who will be the first African American on a lunar mission, thanked Marshall team members for their work with SLS and the space station. He spent 168 days in space as a flight engineer aboard the space station for Expedition 64.

SLS Program Manager John Honeycutt, left, and acting Center Director Joseph Pelfrey, right, join the Artemis II crew for a photo at the employee event in Activities Building 4316.
SLS Program Manager John Honeycutt, left, and acting Center Director Joseph Pelfrey, right, join the Artemis II crew for a photo at the employee event in Activities Building 4316.
NASA/Charles Beason

“Thank you for your work supporting our friends who are working on the space station now and for that amazing legacy that we’ve all had the opportunity to be a part of in one facet or another,” Glover said. “We’re here to do the work and be a part of this team. We hope that what we’re doing makes you proud.”

Koch and Hansen also will make history with the Artemis II mission. Koch will be the first woman on a lunar mission, while Hansen will be the first Canadian.

Andy Buehler, a rocket propulsion engineer at Marshall with Boeing, asked Koch what her message to young girls is as they see a female going to the Moon for the first time.

“Surround yourself with people who are encouraging,” Koch said. “Tell yourself you’re going to do great things one day. You can be that voice for yourself. Don’t just strive to be a part of something, strive to be excellent at what you’re doing.”

Corey Walker, an atmospheric science programmer at Marshall with Jacobs, smiles with the astronauts as they record a video wishing Walker’s grandmother, Brenda Lowery, merry Christmas. During a question and answer session with the astronauts, Walker asked if he could get a video of them for his grandmother as a Christmas gift for her. Walker said his grandmother loves the space program. At far left is Lance D. Davis, Marshall’s news chief, who served as moderator for the event.
Corey Walker, an atmospheric science programmer at Marshall with Jacobs, smiles with the astronauts as they record a video wishing Walker’s grandmother, Brenda Lowery, merry Christmas. During a question and answer session with the astronauts, Walker asked if he could get a video of them for his grandmother as a Christmas gift for her. Walker said his grandmother loves the space program. At far left is Lance D. Davis, Marshall’s news chief, who served as moderator for the event.
NASA/Charles Beason

Hansen said he is excited about the future of Artemis. He told Marshall team members they are part of something that brings value to the world with NASA’s leadership.

“You’re doing that with partners around the world because you’re choosing to lead,” Hansen said. “We need that kind of leadership and that vision more than ever. We really need to be focused on things that lift up humanity. We have a lot of reason for hope for our future.”

Learn more about the Artemis II crew.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Artemis II Crew Signs NASA Moon Rocket Hardware at Marshall

Artemis II Astronauts Victor Glover, Reid Wiseman, Christina Koch, and Jeremy Hansen visit Marshall Space Flight Center in Huntsville, AL on Nov. 27 and sign the Artemis II Orion stage adapter
Brent Gaddes, lead for the Orion stage adapter in the Spacecraft Payload Integration & Evolution Office in the SLS Program at NASA’s Marshall Space Flight Center, far left, talks with NASA astronauts Reid Wiseman, center, and Christina Koch near the SLS Orion stage adapter for the Artemis II mission during their visit to Marshall on Nov. 27.
NASA/Charles Beason

Artemis II astronauts Victor Glover, Reid Wiseman, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen signed the Orion stage adapter for the SLS (Space Launch System) rocket at NASA’s Marshall Space Flight Center on Nov. 27. The hardware is the topmost portion of the SLS rocket that they will launch atop during Artemis II when the four astronauts inside NASA’s Orion spacecraft will venture around the Moon.

The Orion stage adapter is a small ring structure that connects NASA’s Orion spacecraft to the SLS rocket’s interim cryogenic propulsion stage and fully manufactured at Marshall. At five feet tall and weighing 1,800 pounds, the adapter is the smallest major element of the SLS rocket. During Artemis II, the adapter’s diaphragm will serve as a barrier to prevent gases created during launch from entering the spacecraft.

Artemis II Astronaut Jeremy Hansen visits Marshall Space Flight Center in Huntsville, AL on Nov. 27 and signs the Artemis II Orion stage adapter. Artemis II Astronaut Christina Koch visits Marshall Space Flight Center in Huntsville, AL on Nov. 27 and signs the Artemis II Orion stage adapter. Artemis II Astronaut Victor Glover visits Marshall Space Flight Center in Huntsville, AL on Nov. 27 and signs the Artemis II Orion stage adapter. Artemis II Astronaut Reid Wiseman visits Marshall Space Flight Center in Huntsville, AL on Nov. 27 and signs the Artemis II Orion stage adapter.
From left, Artemis II astronauts Jeremy Hansen, Christina Koch, Victor Glover, and Reid Wiseman sign the SLS Orion stage adapter for the Artemis II mission.
NASA/Charles Beason

In addition to signing the Orion stage adapter, Wiseman and Koch also visited the Systems Integration Lab at Marshall prior to an employee event.

Dan Mitchell, lead SLS integrated avionics and software engineer, talks with Wiseman and Koch as they visit the Systems Integration Lab at Marshall.
Dan Mitchell, lead SLS integrated avionics and software engineer, talks with Wiseman and Koch as they visit the Systems Integration Lab at Marshall.
NASA/Charles Beason

NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. Through Artemis, NASA will explore more of the lunar surface than ever before and prepare for the next giant leap: sending astronauts to Mars.

› Back to Top

Monthly Brown Bag Seminars Shine Spotlight on Marshall’s Business Units

By Jessica Barnett

With thousands of employees across hundreds of departments and teams, there’s no shortage of cool things happening at NASA’s Marshall Space Flight Center. To help keep Marshall team members up to date, the center recently started a series of monthly brown bag seminars aimed at highlighting its business units.

Each month features a different business unit. On Nov. 7, nearly 300 Marshall team members attended the first seminar, which focused on Marshall’s Moon/Mars Surface Technologies and Systems. In doing so, the participants learned more about the center’s strategy.

Geologist Jennifer Edmunson, from right, discusses lunar regolith and infrastructure plans during a brown bag seminar Nov. 7 at NASA’s Marshall Space Flight Center that highlighted the center’s Moon/Mars Surface Technologies and Systems business unit.
Geologist Jennifer Edmunson, from right, discusses lunar regolith and infrastructure plans during a brown bag seminar Nov. 7 at NASA’s Marshall Space Flight Center that highlighted the center’s Moon/Mars Surface Technologies and Systems business unit.
NASA/Charles Beason

“We’re in between the hopes and dreams of what you might find out there or what the vision of the future on the lunar surface might look like, and what is actually practical,” said Michael Zanetti, a lunar and planetary geologist at Marshall who was also one of the speakers during the Nov. 7 seminar.

Zanetti discussed GPS-denied LiDAR navigation systems, including KNaCK (Kinematic Navigation and Cartography Knapsack), a proof-of-concept 3D terrain mapping, navigation, and algorithm development tool that can be used to determine the layout of portions of the lunar or Martian surface even when there is no light source or GPS to guide it.

He also talked about Marshall’s Lunar Regolith Terrain Facility – a 125-by-125-foot area covered in 500 tons of lunar regolith simulant that can be quickly modified as needed for robotics testing.

“If we’re going to send anything to the lunar surface, we need to make sure that technology is going to be able to function when it gets there,” said Jennifer Edmunson, project manager for Marshall’s Moon-to-Mars Planetary Autonomous Construction Technology Project, or MMPACT. “Testing with regolith is important to do that, but since we don’t have enough regolith material from the Apollo missions, we rely on simulants.”

Materials test engineer Annette Gray, far left at table, explains how participants in Marshall’s MERCRII (Metallic Environmentally Resistant Coatings Rapid Innovation Initiative) worked with other centers and NASA partners to develop a radiation-resistant coating to improve the wear resistance of mechanism joints on the lunar or Martian surface.
Materials test engineer Annette Gray, far left at table, explains how participants in Marshall’s MERCRII (Metallic Environmentally Resistant Coatings Rapid Innovation Initiative) worked with other centers and NASA partners to develop a radiation-resistant coating to improve the wear resistance of mechanism joints on the lunar or Martian surface.

MMPACT is currently working to determine how best to build infrastructure on the lunar surface using the regolith and resources already available there. Edmunson shared how the project aims to build landing pads and even habitats on the Moon, but that it’s important to find ways of building that can withstand the extreme temperature variations, lengthy moonquakes, and other challenges that would be faced on the lunar surface.

Joining Edmunson and Zanetti at the seminar was Annette Gray, a materials test engineer who was part of MERCRII (Metallic Environmentally Resistant Coatings Rapid Innovation Initiative). Gray explained how the early career initiative project worked with other centers and NASA partners to develop a radiation-resistant coating to improve the wear resistance of mechanism joints on the lunar or Martian surface.

Part of the initiative included acquiring a Planetary, Lunar, and Asteroid Natural Environment Testbed, or PLANET. Gray said the PLANET was a 2-meter-by-3-meter chamber with up to 1 ton of regolith simulant inside that could test high vacuum, low-density plasma, and various atmospheric conditions.

Attendees at Marshall’s first brown bag seminar check out lunar regolith samples, view informational displays, and further discuss the featured topics following the seminar.
Attendees at Marshall’s first brown bag seminar check out lunar regolith samples, view informational displays, and further discuss the featured topics following the seminar.
NASA/Ray Osorio

The seminar ended with a question-and-answer session and a chance for in-person attendees to check out regolith simulant samples.

“It was an excellent way to showcase how the varied work we do at Marshall is enabling future NASA missions and addressing critical gaps,” said MMSTS Strategy Lead Shawn Maynor. “The excitement was palpable, and the discussion was lively. I truly feel that Marshall is in a unique position to capitalize on the evolving space industry.”

The next brown bag seminar is set for January 2024, after the winter holiday season.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

NASA Releases Its First International Space Station Tour in Spanish

Lee esta nota de prensa en español aquí.

Record-breaking NASA astronaut Frank Rubio provides the agency’s first Spanish-language video tour of humanity’s home in space – the International Space Station.

Rubio welcomes the public aboard the microgravity science laboratory in a behind-the-scenes look at living and working in space recorded during his 371-day mission aboard the space station, the longest single spaceflight in history by an American.

The station tour is available to watch on the agency’s NASA+ streaming platform, NASA app, NASA Television, YouTube, and the agency’s website.

Continuously inhabited for more than 23 years, the space station is a scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations that could not be performed on Earth.

The Payload Operations Integration Center at NASA’s Marshall Space Flight Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

The crew living aboard the station are the hands of thousands of researchers on the ground conducting more than 3,300 experiments in microgravity. During his record-breaking mission, Rubio spent many hours contributing to scientific activities aboard the orbiting laboratory, conducting everything from human health studies to plant research.

Rubio returned to Earth in September, having completed approximately 5,936 orbits of the Earth and a journey of more than 157 million miles during his first spaceflight, roughly the equivalent of 328 trips to the Moon and back.

Get the latest NASA space station news, images and features on InstagramFacebook, and X.

› Back to Top

NASA’s Dragonfly to Proceed with Final Mission Design Work

NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and fabrication – known as Phase C – during FY (fiscal year) 2024. The agency is postponing formal confirmation of the mission (including its total cost and schedule) until mid-2024, following the release of the FY 2025 President’s Budget Request.

Earlier this year, Dragonfly – a mission to send a rotorcraft to explore Saturn’s moon Titan – passed all the success criteria of its Preliminary Design Review. The Dragonfly team conducted a re-plan of the mission based on expected funding available in FY 2024 and estimate a revised launch readiness date of July 2028. The agency will officially assess the mission’s launch readiness date in mid-2024 at the agency Program Management Council.

NASA's Dragonfly rotorcraft-lander animation
Artist’s impression of Dragonfly heading off toward its next landing spot on Titan.
NASA/Johns Hopkins APL/Steve Gribben

“The Dragonfly team has successfully overcome a number of technical and programmatic challenges in this daring endeavor to gather new science on Titan,” said Nicola Fox, associate administrator of NASA’s Science Mission Directorate at NASA Headquarters. “I am proud of this team and their ability to keep all aspects of the mission moving toward confirmation.”

Dragonfly takes a novel approach to planetary exploration, for the first time employing a rotorcraft-lander to travel between and sample diverse sites on Titan. Dragonfly’s goal is to characterize the habitability of the moon’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan.

Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center; Lockheed Martin Space in Littleton, Colorado; Sikorsky, a Lockheed Martin company; NASA’s Ames Research Center; NASA’s Langley Research Center; Penn State University in State College, Pennsylvania; Malin Space Science Systems in San Diego, California; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory; CNES (Centre National d’Etudes Spatiales), the French space agency, in Paris, France; DLR (German Aerospace Center) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo, Japan.

Dragonfly is the fourth mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the Science Mission Directorate.

› Back to Top

Webb Telescope: A Prominent Protostar in Perseus

A new Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797, known as HH 797.

Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of the image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars.

In the lower half of the image is a narrow, horizontal nebula that stretches from edge to edge. It is brightly coloured with more variety on its right side. In the upper half there is a glowing point with multi-coloured light radiating from it in all directions. A bright star with long diffraction spikes lies along the right edge, and a few smaller stars are spread around. The background is covered in a thin haze.
The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797, or HH 797. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).
ESA/Webb, NASA & CSA, T. Ray (Dublin Institute for Advanced Studies)

The image was captured with Webb’s NIRCam (Near-InfraRed Camera). Infrared imaging is powerful in studying newborn stars and their outflows, because the youngest stars are invariably still embedded within the gas and dust from which they are formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making Herbig-Haro objects ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen and carbon monoxide, emit infrared light that Webb can collect to visualize the structure of the outflows. NIRCam is particularly good at observing the hot (thousands of degree Celsius) molecules that are excited as a result of shocks.

Using ground-based observations, researchers have previously found that for cold molecular gas associated with HH 797, most of the red-shifted gas (moving away from us) is found to the south (bottom right), while the blue-shifted gas (moving towards us) is to the north (bottom left). A gradient was also found across the outflow, such that at a given distance from the young central star, the velocity of the gas near the eastern edge of the jet is more red-shifted than that of the gas on the western edge. Astronomers in the past thought this was due to the outflow’s rotation. In this higher resolution Webb image, however, we can see that what was thought to be one outflow is in fact made up of two almost parallel outflows with their own separate series of shocks (which explains the velocity asymmetries). The source, located in the small dark region (bottom right of center), and already known from previous observations, is therefore not a single but a double star. Each star is producing its own dramatic outflow. Other outflows are also seen in this image, including one from the protostar in the top right of center along with its illuminated cavity walls.

HH 797 resides directly north of HH 211 (separated by approximately 30 arcseconds), which was the feature of a Webb image release in September 2023.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center.

› Back to Top

Powered by WPeMatico

Get The Details…
Lee Mohon

NASA Remembers Trailblazing Astronaut, Scientist Mary Cleave

NASA Remembers Trailblazing Astronaut, Scientist Mary Cleave

NASA Astronaut Mary L. Cleave. April 8, 1985
NASA

Retired NASA astronaut Mary Cleave, a veteran of two NASA spaceflights, died Nov. 27. She was 76. A scientist with training in civil and environmental engineering, as well as biological sciences and microbial ecology, Cleave was the first woman to serve as an associate administrator for NASA’s Science Mission Directorate.

Born in Southampton, New York, Cleave received a Bachelor of Science degree in biological sciences from Colorado State University, Fort Collins, in 1969, and Master of Science in microbial ecology and a doctorate in civil and environmental engineering, both from Utah State University, Logan, in 1975 and 1979, respectively.

“I’m sad we’ve lost trail blazer Dr. Mary Cleave, shuttle astronaut, veteran of two spaceflights, and first woman to lead the Science Mission Directorate as associate administrator,” said NASA Associate Administrator Bob Cabana. “Mary was a force of nature with a passion for science, exploration, and caring for our home planet. She will be missed.”

Cleave was selected as an astronaut in May 1980. Her technical assignments included flight software verification in the SAIL (Shuttle Avionics Integration Laboratory), spacecraft communicator on five space shuttle flights, and malfunctions procedures book and crew equipment design.

Cleave launched on her first mission, STS-61B, aboard space shuttle Atlantis on Nov. 26,1985. During the flight, the crew deployed communications satellites, conducted two six-hour spacewalks to demonstrate space station construction techniques, operated the Continuous Flow Electrophoresis experiment for McDonnell Douglas and a Getaway Special container for Telesat and tested the Orbiter Experiments Digital Autopilot.

Cleave’s second mission, STS-30, which also was on Atlantis, launched May 4, 1989. It was a four-day flight during which the crew successfully deployed the Magellan Venus exploration spacecraft, the first planetary probe to be deployed from a space shuttle. Magellan arrived at Venus in August 1990 and mapped more than 95% of the surface. In addition, the crew also worked on secondary payloads involving indium crystal growth, electrical storms, and Earth observation studies.

Cleave transferred from NASA’s Johnson Space Center in Houston to the agency’s Goddard Space Flight Center in Greenbelt, Maryland in May 1991. There, she worked in the Laboratory for Hydrospheric Processes as the project manager for SeaWiFS (Sea-viewing, Wide-Field-of-view-Sensor), an ocean color sensor which monitored vegetation globally.

In March 2000, she went to serve as deputy associate administrator for advanced planning in the Office of Earth Science at NASA’s Headquarters in Washington. From August 2005 to February 2007, Cleave was the associate administrator for NASA’s Science Mission Directorate where she guided an array of research and scientific exploration programs for planet Earth, space weather, the solar system, and the universe. She also oversaw an assortment of grant-based research programs and a diverse constellation of spacecraft, from small, principal investigator-led missions to large flagship missions.

Cleave’s awards included: two NASA Space Flight medals; two NASA Exceptional Service medals; an American Astronautical Society Flight Achievement Award; a NASA Exceptional Achievement Medal; and NASA Engineer of the Year.

Cleave retired from NASA in February 2007.

https://go.nasa.gov/3uDCykl

-end-

Cheryl Warner
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov

Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov

Powered by WPeMatico

Get The Details…
Abbey A. Donaldson