NASA’s Curiosity Rover Clocks 4,000 Days on Mars

NASA’s Curiosity Rover Clocks 4,000 Days on Mars

NASA’s Curiosity Mars rover captured this 360-degree panorama using its black-and-white navigation cameras, or Navcams, at a location where it collected a sample from a rock nicknamed “Sequoia.” The panorama was captured on Oct. 21 and 26, 2023.
NASA/JPL-Caltech

The mission team is making sure the robotic scientist, now in its fourth extended mission, is staying strong, despite wear and tear from its 11-year journey.

Four thousand Martian days after setting its wheels in Gale Crater on Aug. 5, 2012, NASA’s Curiosity rover remains busy conducting exciting science. The rover recently drilled its 39th sample then dropped the pulverized rock into its belly for detailed analysis.

To study whether ancient Mars had the conditions to support microbial life, the rover has been gradually ascending the base of 3-mile-tall (5-kilometer-tall) Mount Sharp, whose layers formed in different periods of Martian history and offer a record of how the planet’s climate changed over time.

The latest sample was collected from a target nicknamed “Sequoia” (all of the mission’s current science targets are named after locations in California’s Sierra Nevada). Scientists hope the sample will reveal more about how the climate and habitability of Mars evolved as this region became enriched in sulfates –minerals that likely formed in salty water that was evaporating as Mars first began drying up billions of years ago. Eventually, Mars’ liquid water disappeared for good.

NASA’s Curiosity Mars rover used the drill on the end of its robotic arm to collect a sample from a rock nicknamed “Sequoia” on Oct. 17, 2023, the 3,980th Martian day, or sol, of the mission. The rover’s Mastcam captured this image.
NASA/JPL-Caltech/MSSS

“The types of sulfate and carbonate minerals that Curiosity’s instruments have identified in the last year help us understand what Mars was like so long ago. We’ve been anticipating these results for decades, and now Sequoia will tell us even more,” said Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California, which leads the mission.

Deciphering the clues to Mars’ ancient climate requires detective work. In a recent paper published in the Journal of Geophysical Research: Planets, team members used data from Curiosity’s Chemistry and Mineralogy (CheMin) instrument to discover a magnesium sulfate mineral called starkeyite, which is associated with especially dry climates like Mars’ modern climate.

The team believes that after sulfate minerals first formed in salty water that was evaporating billions of years ago, these minerals transformed into starkeyite as the climate continued drying to its present state. Findings like this refine scientists’ understanding of how the Mars of today came to be.

Time-Tested Rover

Despite having driven almost 20 miles (32 kilometers) through a punishingly cold environment bathed in dust and radiation since 2012, Curiosity remains strong. Engineers are currently working to resolve an issue with one of the rover’s main “eyes” – the 34 mm focal length left camera of the Mast Camera, or Mastcam, instrument. In addition to providing color images of the rover’s surroundings, each of Mastcam’s two cameras helps scientists determine from afar the composition of rocks by the wavelengths of light, or spectra, they reflect in different colors.

This anaglyph version of Curiosity’s panorama taken at “Sequoia” can be viewed in 3D using red-blue glasses.
NASA/JPL-Caltech

To do that, Mastcam relies on filters arranged on a wheel that rotates under each camera’s lens. Since Sept. 19, the left camera’s filter wheel has been stuck between filter positions, the effects of which can be seen on the mission’s raw, or unprocessed, images. The mission continues to gradually nudge the filter wheel back toward its standard setting.

If unable to nudge it back all the way, the mission would rely on the higher resolution 100 mm focal length right Mastcam as the primary color-imaging system. As a result, how the team scouts for science targets and rover routes would be affected: The right camera needs to take nine times more images than the left to cover the same area. The teams also would have a degraded ability to observe the detailed color spectra of rocks from afar.

Along with efforts to nudge the filter back, mission engineers continue to closely monitor the performance of the rover’s nuclear power source and expect it will provide enough energy to operate for many more years. They have also found ways to overcome challenges from wear on the rover’s drill system and robotic-arm joints. Software updates have fixed bugs and added new capabilities to Curiosity, too, making long drives easier for the rover and reducing wheel wear that comes from steering (an earlier addition of a traction-control algorithm also helps reduce wheel wear from driving over sharp rocks).

Meanwhile, the team is preparing for a break of several weeks in November. Mars is about to disappear behind the Sun, a phenomenon known as solar conjunction. Plasma from the Sun can interact with radio waves, potentially interfering with commands during this time. Engineers are leaving Curiosity with a to-do list from Nov. 6 to 28, after which period communications can safely resume.

More About the Mission

Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. Malin Space Science Systems in San Diego built and operates Mastcam.

For more about Curiosity, visit:
http://mars.nasa.gov/msl
https://www.nasa.gov/mission_pages/msl/index.html

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2023-160

Powered by WPeMatico

Get The Details…
Naomi Hartono

NASA Invites Stakeholders to STMD’s LIFT-1 Industry Forum

NASA Invites Stakeholders to STMD’s LIFT-1 Industry Forum

Artist concept of an In-situ Resource Utilization (ISRU) demonstration on the Moon. Many technologies in six priority areas encompassed by NASA’s Lunar Surface Innovation Initiative will need testing, such as advancing ISRU technologies that could lead to future production of fuel, water, or oxygen from local materials, expanding exploration capabilities.
Artist concept of an In-situ Resource Utilization (ISRU) demonstration on the Moon. Many technologies in six priority areas encompassed by NASA’s Lunar Surface Innovation Initiative will need testing, such as advancing ISRU technologies that could lead to future production of fuel, water, or oxygen from local materials, expanding exploration capabilities.
NASA

NASA is hosting a virtual industry forum on Nov. 13, 2023, to introduce the agency’s Lunar Infrastructure Foundational Technologies (LIFT-1) demonstration Request for Information (RFI). At this event, representatives of NASA’s Space Technology Mission Directorate (STMD) will discuss the relevant Moon-to-Mars Objectives, STMD Envisioned Future Priorities (EFPs), and will answer questions from potential respondents interested in the RFI. Written responses to the Q&A will be posted to NSPIRES after the meeting. 

Although the primary focus for this activity is a future lunar surface resource utilization (ISRU) demonstration it will require multiple capabilities that may address other infrastructure objectives. The Industry Day offers an opportunity for respondents to gain insight and understanding of the ISRU objectives as well as those other foundational infrastructure objectives.

LIFT-1 REQUEST FOR INFORMATION INDUSTRY FORUM (virtual)  

Monday, Nov. 13, 2023 

1:00 p.m. – 2:00 p.m. EST 

Speakers: 

  • Niki Werkheiser, director of Technology Maturation, NASA’s Space Technology Mission Directorate, NASA Headquarters     
  • Jerry Sanders, lead for NASA’s In-Space Resource Utilization (ISRU), NASA Capability Leadership Team (CLT) (multiple NASA centers)  
  • Mike Ching, technical advisor, NASA’s Lunar Surface Innovation Initiative (LSII); Space Technology Mission Directorate, NASA Headquarters     

Platform: The Industry Forum will be conducted via the Webex application. To connect to the industry forum Webex meeting, participants must first register. Once registered, participants will receive a meeting invitation to the registered email address with options to join via Webex or audio only (phone). 

MORE INFORMATION 

The LIFT-1 RFI is available on NSPIRES and open for responses through December 18, 2023 (5:00 p.m. EST)

Please direct questions related to the RFI and industry day by email to: HQ-STMD-LIFT-1-RFI@nasaprs.com 

For media inquiries, please contact Jimi Russell, james.j.russell@nasa.gov.

Powered by WPeMatico

Get The Details…
Stefanie Payne

NASA Seeks Input for Future Lunar Surface Resource Utilization Demo

NASA Seeks Input for Future Lunar Surface Resource Utilization Demo

Artist concept of an In-situ Resource Utilization (ISRU) demonstration on the Moon. Many technologies in six priority areas encompassed by NASA’s Lunar Surface Innovation Initiative will need testing, such as advancing ISRU technologies that could lead to future production of fuel, water, or oxygen from local materials, expanding exploration capabilities.
Artist concept of an In-situ Resource Utilization (ISRU) demonstration on the Moon. Many technologies in six priority areas encompassed by NASA’s Lunar Surface Innovation Initiative will need testing, such as advancing ISRU technologies that could lead to future production of fuel, water, or oxygen from local materials, expanding exploration capabilities.

As NASA ushers in an exciting era of long-term exploration on the Moon with Artemis, new strategies are being formulated to determine how technology, infrastructure, and operations will function together as a cohesive and cross-cutting system.

As a sustained presence grows at the Moon, opportunities to harvest lunar resources could lead to safer, more efficient operations with less dependence on Earth. Many new technologies in six priority areas encompassed by NASA’s Lunar Surface Innovation Initiative will need testing. For example, advancing In-situ Resource Utilization (ISRU) technologies could lead to future production of fuel, water, or oxygen from local materials, expanding exploration capabilities.

To support ISRU technology maturation, NASA issued a Request for Information (RFI) on Nov. 6 to formulate its future Lunar Infrastructure Foundational Technologies (LIFT-1) demonstration. Led by the Space Technology Mission Directorate (STMD), NASA’s primary objective for LIFT-1 is to demonstrate ISRU technologies to extract oxygen from lunar soil, to inform eventual production, capture, and storage. Additional LIFT-1 objectives may include demonstrating new landing technologies, surface operations, and scalable power generation in the Moon’s South Pole region.

With the RFI, NASA is asking for input from the lunar community to inform an integrated approach inclusive of launch, landing, and demonstration of surface infrastructure technologies as part of a subscale ISRU demonstration.

“The LIFT-1 demonstration creates a viable path to launch, land, and conduct operations on the lunar surface. This is the infusion path we need for ongoing industry and NASA center-led technology development activities,” said Dr. Prasun Desai, acting associate administrator of STMD at the agency’s Headquarters in Washington. “Using in-situ resources is essential to making a sustained presence farther from Earth possible. Just as we need consumables and infrastructure to live and work on our home planet, we’ll need similar support systems on the Moon for crew and robots to operate safely and productively.”

NASA has several current ISRU investments through partnerships with industry and academia. Prospecting, extraction, and mining initiatives are advancing our capabilities to find and harness resources from the lunar regolith. Chemical and thermal process developments may provide options to break down naturally occurring minerals and compounds found on the Moon and convert them to propellant or human consumables. Other potential longer-term applications could lead to extraterrestrial metal processing and construction of lunar surface structures using resources found on the Moon. Many of these technologies could be demonstrated and advanced on the Moon for future use at Mars. While the Moon has almost no atmosphere, Mars has an atmosphere rich in carbon dioxide, and NASA is investing in initiatives to use CO2 to create other useful elements or compounds.

MOXIE on NASA’s Mars Perseverance Rover marked the beginning of off-Earth ISRU technology demonstrations, successfully extracting oxygen from atmospheric carbon dioxide throughout a series of tests. NASA intends to demonstrate a similar capability on the lunar surface from its resources, and this RFI will help NASA capture stakeholder interest and ideas on how to partner, preferred acquisition approaches, and funding feasibility. This kind of input is critical to advancing innovative solutions that will help NASA and its partners explore the surface of the Moon for longer periods of time than ever before possible.

“An ISRU technology demonstration approach has been a topic of discussion within the Lunar Surface Innovation Initiative and Consortium communities for several years,” said Niki Werkheiser, director of Technology Maturation in STMD. “This RFI is the next phase to make it a reality.” 

The Lunar Surface Innovation Consortium (LSIC) was established by NASA in 2020 to coalesce government, academia, non-profit institutions, and the private sector to identify technological capabilities and hurdles that must be retired to achieve a sustained presence on the surface of the Moon, both human and robotic. 

The LIFT-1 RFI is available on NSPIRES and open for responses through Dec. 18, 2023, at 5:00 p.m. EST. NASA will host an industry forum on Monday, Nov. 13, 2023, at 1:00 p.m. EST.

Powered by WPeMatico

Get The Details…
Stefanie Payne

NASA Stennis Compiles Framework for the Future to Guide Center Forward

NASA Stennis Compiles Framework for the Future to Guide Center Forward

Cover is a futuristic illustration of astronauts living in space with Earth visible in the distance
An image shows the cover of the NASA Stennis Strategic Plan for 2024-2028.
NASA Stennis

NASA’s Stennis Space Center began with a single mission – to test Apollo rocket stages to carry humans to the Moon. Moving forward, the site has a renewed vision – to evolve as a unique, multifaceted aerospace and technology hub.

It also has a clear blueprint for getting there.

The NASA Stennis Strategic Plan 2024-2028, available online at nasa-stennis-strategic-plan-2024-2028.pdf, outlines goals and objectives in five critical areas – propulsion, the federal city, autonomous systems, range operations, and workforce development. For the center, the overarching focus is to align itself with the NASA mission, adapt to the changing aerospace and technology landscape, and grow into the future.

“A famous quote I really like says, ‘The best way to predict the future is to create it,’” NASA Stennis Center Director Rick Gilbrech said. “We are committed to doing just that by embracing the possibilities and seizing the opportunities before us. We want to ensure the road to space, and innovation continues to go through Mississippi for the benefit of all.”

Much has changed in the aerospace and technology world since NASA and NASA Stennis were established more than 60 years ago. Thanks in large part to NASA’s involvement, commercial space has flourished and continues to grow. Technology moves at a breakneck speed.

NASA Stennis has mirrored the nation’s space program, testing engines and propulsion systems for all three U.S. human space exploration eras – Apollo, space shuttle, and now, SLS (Space Launch System). Along the way, the site also grew into a federal city with about 40 resident companies, agencies, and entities on site. More recently, it emerged as a leader in working with commercial aerospace companies, both large and small.

It now seeks to take the next step by building on past success, using its skilled workforce and unique infrastructure and location to attract new tenants onsite, and expanding into such areas as autonomous systems and range operations.

“We have the chance to invent the future of NASA Stennis, and we have to be very strategic about it,” said Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office. “The new plan is our guide to help make sure we are aligning ourselves with the NASA mission and the needs of our commercial partners.”

Key goals in the plan include: (1) transforming into a multi-user propulsion test enterprise; (2) growing as a sustainable and long-term federal city; (3) designing intelligent and autonomous aerospace systems and services; (4) utilizing its unique range location and infrastructure to support the testing and operation of uncrewed air, land, and marine systems; and (5) cultivating and optimizing the NASA Stennis workforce for the future.

“There is a lot of change likely in the years ahead, and we have to rethink our role and how we can continue to provide value,” Armstrong said. “This plan will serve as a framework to guide our actions and decisions.”

In six decades, NASA Stennis has grown into a powerful economic engine while also meeting challenges head-on and negotiating change. The challenge – and opportunity – now, Armstrong said, is to adapt to an evolving aerospace and technology landscape, connect people to purpose, and open a world of new possibilities.

C. Lacy Thompson
Stennis Space Center, Bay St. Louis, Mississippi
228-363-5499
calvin.l.thompson@nasa.gov

Powered by WPeMatico

Get The Details…
LaToya Dean

One Year of Spritacular Science!

One Year of Spritacular Science!

1 min read

One Year of Spritacular Science!

Have a camera? The Spritacular project needs your help capturing images of sprites and other Transient Luminous Events (TLEs) above thunderstorms.
Credit: Rachel Lense. Gigantic Jet Image Credit: Frankie Lucena

Sprites, those beguiling electrical flashes of light above thunderstorms, raise so many questions: Why do they take the shapes they do? What conditions in the upper atmosphere trigger them? How do sprites affect Earth’s global electric circuit, and what is their contribution to the energy in Earth’s upper atmosphere? On October 26, 2022, NASA’s Spritacular project began asking volunteers to help answer these questions. Happy Birthday, Spritacular!

“It has been an amazing journey,” said Dr. Burcu Kosar, space physicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland and Spritacular principal investigator.  “Our community is growing steadily. We have been so thankful for all the participation so far.”

The project has 308 volunteers that have contributed 189 observations from 13 different countries. The database analysis is underway, so stay tuned for some exciting research outcomes!

Have a camera? Join the chase of sprites from the ground, engage with our global community of observers, and contribute your observations for NASA Science!

NASA’s Citizen Science Program:
Learn about NASA citizen science projects

Share

Details

Last Updated
Nov 06, 2023

Powered by WPeMatico

Get The Details…