NASA Administrator to Travel to India, UAE; Discuss Space Cooperation

NASA Administrator to Travel to India, UAE; Discuss Space Cooperation

NASA Administrator Bill Nelson gives remarks after Indian Ambassador to the United States Taranjit Sandhu signed the Artemis Accords, Wednesday, June 21, 2023, at the Willard InterContinental Hotel in Washington.
NASA/Bill Ingalls

NASA Administrator Bill Nelson will travel to India and the United Arab Emirates (UAE) for a series of meetings beginning Monday, Nov. 27, with key government officials.

Nelson also will meet with space officials in both countries to deepen bilateral cooperation across a broad range of innovation and research-related areas, especially in human exploration and Earth science.

The visit to India fulfills a commitment through the United States and India initiative on Critical and Emerging Technology spearheaded by President Joe Biden. Nelson will visit several locations in India, including the Bengaluru-based facilities where the NISAR spacecraft, a joint Earth-observing mission between NASA and the Indian Space Research Organization (ISRO), is undergoing testing and integration for launch in 2024. NISAR is short for NASA ISRO Synthetic Aperture Radar.

As the first satellite mission between NASA and ISRO, NISAR is a revolutionary Earth-observing instrument, the first in the Earth System Observatory, that will measure Earth’s changing ecosystems, dynamic surfaces, and ice masses providing information about biomass, natural hazards, sea level rise, and groundwater, key information to guide efforts related to climate change, hazard mitigation, agriculture, and more.

While in the UAE, Nelson will participate in the 2023 United Nations Climate Change Conference, highlighting NASA’s role as a global leader in providing decisionmakers with critical Earth-science data. It will be the first time a NASA administrator will have attended the conference.

Students in each country also will have the opportunity to meet with Nelson to discuss science, technology, engineering, and mathematics (STEM) education and their roles as members of the Artemis Generation.

For more information about NASA’s international partnerships, visit:

https://www.nasa.gov/oiir

-end-

Jackie McGuinness
Headquarters, Washington
202-358-1600
jackie.mcguinness@nasa.gov

Share

Details

Last Updated

Nov 24, 2023

Powered by WPeMatico

Get The Details…
Abbey A. Donaldson

SaSa Learning Activities

SaSa Learning Activities

1 min read

SaSa Learning Activities

Students of the 2022 SaSa class stand in a cockpit, learning from a NASA airman as part of a training module.
Students of the 2022 SaSa class stand in a cockpit, learning from a NASA airman as part of a training module.

Module 1

  • The first module starts with a two-week introductory summer workshop at the University of Maryland, Baltimore County (UMBC) and Howard University Beltsville Campus research facility in Beltsville, Maryland
  • Immediately after the workshop, there is a one-week, hands-on training on remote sensing/satellite application to disaster monitoring (ex. smoke from forest fires, volcanic plumes, desert dust storms, chemical spills, tornadoes and hurricanes, etc.) using the Direct Broadcast System Antenna Receiving and Data Analyses System at Hampton University.

Module 2

  • Students participate in a three-week field deployment based out of the NASA Wallops Flight Facility, where participants will be involved in all aspects of a scientific field campaign; from detailed planning for achieving mission objectives to flying on NASA aircraft and assisting in instrument operation and field validation at selected sites.

Module 3

  • The final module is focused on processing and analyzing the collected field data and presenting early results to peers, mentors, and other stakeholders based at UMBC.
  • Participants are provided academic advisement and mentorship support until graduation, to help improve student retention and assure timely progress to graduation.

Share

Details

Last Updated

Nov 22, 2023

Related Terms

Powered by WPeMatico

Get The Details…
Milan Loiacono

NASA Uses Two Worlds to Test Future Mars Helicopter Designs

NASA Uses Two Worlds to Test Future Mars Helicopter Designs

6 min read

NASA Uses Two Worlds to Test Future Mars Helicopter Designs

This video combines two perspectives of the 59th flight of NASA’s Ingenuity Mars Helicopter. Video on the left was captured by the Mastcam-Z on NASA’s Perseverance Mars rover; the black-and-white video on the right was taken by Ingenuity’s downward-pointing Navcam. The flight occurred Sept 16. NASA/JPL-Caltech/ASU/MSSS

Engineers will go beyond the ends of the Earth to find more performance for future Mars helicopters.

For the first time in history, two planets have been home to testing future aircraft designs. On this world, a new rotor that could be used with next-generation Mars helicopters was recently tested at NASA’s Jet Propulsion Laboratory in Southern California, spinning at near-supersonic speeds (0.95 Mach). Meanwhile, the agency’s Ingenuity Mars Helicopter has achieved new altitude and airspeed records on the Red Planet in the name of experimental flight testing.

“Our next-generation Mars helicopter testing has literally had the best of both worlds,” said Teddy Tzanetos, Ingenuity’s project manager and manager for the Mars Sample Recovery Helicopters. “Here on Earth, you have all the instrumentation and hands-on immediacy you could hope for while testing new aircraft components. On Mars, you have the real off-world conditions you could never truly re-create here on Earth.” That includes a whisper-thin atmosphere and significantly less gravity than on Earth.

The next-generation carbon fiber rotor blades being tested on Earth are almost 4 inches (more than 10 centimeters) longer than Ingenuity’s, with greater strength and a different design. NASA thinks these blades could enable bigger, more capable Mars helicopters. The challenge is, as the blade tips approach supersonic speeds, vibration-causing turbulence can quickly get out of hand.

To find a space big enough to create a Martian atmosphere on Earth, engineers looked to JPL’s 25-foot wide, 85-foot-tall (8-meter-by-26-meter) space simulator – a place where Surveyor, Voyager, and Cassini got their first taste of space-like environments. For three weeks in September, a team monitored sensors, meters, and cameras as the blades endured run after run at ever-higher speeds and greater pitch angles.

A dual rotor system for the next generation of Mars helicopters is tested in the 25-Foot Space Simulator at NASA’s Jet Propulsion Laboratory on Sept.15. Longer and stronger than those used on the Ingenuity Mars Helicopter, the carbon-fiber blades reached near-supersonic speeds during testing. NASA/JPL-Caltech

“We spun our blades up to 3,500 rpm, which is 750 revolutions per minute faster than the Ingenuity blades have gone,” said Tyler Del Sesto, Sample Recovery Helicopter deputy test conductor at JPL. “These more efficient blades are now more than a hypothetical exercise. They are ready to fly.”

At around the same time, and about 100 million miles (161 million kilometers) away, Ingenuity was being commanded to try things the Mars Helicopter team never imagined they would get to do. 

Fourth Rock Flight Testing

Ingenuity was originally slated to fly no more than five times. With its first flight entering the mission logbook more than two-and-a-half years ago, the helicopter has exceeded its planned 30-day mission by 32 times and has flown 66 times. Every time Ingenuity goes airborne, it covers new ground, offering a perspective no previous planetary mission could achieve. But lately, Team Ingenuity has been taking their solar-powered rotorcraft out for a spin like never before.

“Over the past nine months, we have doubled our max airspeed and altitude, increased our rate of vertical and horizontal acceleration, and even learned to land slower,” said Travis Brown, Ingenuity’s chief engineer at JPL. “The envelope expansion provides invaluable data that can be used by mission designers for future Mars helicopters.”

Limited by available energy and motor-temperature considerations, Ingenuity flights usually last around two to three minutes. Although the helicopter can cover more ground in a single flight by flying faster, flying too fast can confuse the onboard navigation system. The system uses a camera that recognizes rocks and other surface features as they move through its field of view. If those features whiz by too fast, the system can lose its way.

So, to achieve a higher maximum ground speed, the team sends commands for Ingenuity to fly at higher altitudes (instructions are sent to the helicopter before each flight), which keeps features in view longer. Flight 61 established a new altitude record of 78.7 feet (24 meters) as it checked out Martian wind patterns. With Flight 62 Ingenuity set a speed record of 22.3 mph (10 meters per second) – and scouted a location for the Perseverance rover’s science team.

The team has also been experimenting with Ingenuity’s landing speed. The helicopter was designed to contact the surface at a relatively brisk 2.2 mph (1 mps) so its onboard sensors could easily confirm touchdown and shut down the rotors before it could bounce back into the air. A helicopter that lands more slowly could be designed with lighter landing gear. So, on Flights 57, 58, and 59 they gave it a whirl, demonstrating Ingenuity could land at speeds 25% slower than the helicopter was originally designed to land at.

All this Martian Chuck Yeager-ing is not over. In December, after solar conjunction, Ingenuity is expected to perform two high-speed flights during which it will execute a special set of pitch-and-roll angles designed to measure its performance.

“The data will be extremely useful in fine-tuning our aero-mechanical models of how rotorcraft behave on Mars,” said Brown. “On Earth, such testing is usually performed in the first few flights. But that’s not where we’re flying. You have to be a little more careful when you’re operating that far away from the nearest repair shop, because you don’t get any do-overs.”

More About Ingenuity

Ingenuity began its life at Mars as a technology demonstration. It first flew on April 19, 2021, hovering 10 feet (3 meters) for 30 seconds. Four more flights in as many weeks added 499 seconds and saw the helicopter flying horizontally over the surface for 1,171 feet (357 meters). After proving flight was possible on Mars, Ingenuity entered an operations demonstration phase in May 2021 to show how aerial scouting could benefit future exploration of Mars and other worlds.

The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment Inc., Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System.

At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars Helicopter.

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Alana Johnson/ Karen Fox
NASA Headquarters, Washington
202-358-1501 / 301-286-6284
alana.r.johnson@nasa.gov / karen.c.fox@nasa.gov

2023-173      

Share

Details

Last Updated

Nov 22, 2023

Powered by WPeMatico

Get The Details…
Anthony Greicius

The Marshall Star for November 22, 2023

The Marshall Star for November 22, 2023

19 Min Read

The Marshall Star for November 22, 2023

Artemis II NASA astronauts Reid Wiseman and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen view the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility in New Orleans on Nov. 16.

Artemis II Astronauts View SLS Core Stage at Michoud

Artemis II NASA astronauts Reid Wiseman and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen viewed the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility on Nov. 16. The three astronauts, along with NASA’s Victor Glover, will launch atop the rocket stage to venture around the Moon on Artemis II, the first crewed flight for Artemis.

Artemis II NASA astronauts Reid Wiseman and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen view the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility in New Orleans on Nov. 16.
From left, Artemis II NASA astronaut Reid Wiseman, CSA (Canadian Space Agency) astronaut Jeremy Hansen, NASA astronaut Christina Koch, and Boeing’s Amanda Gertjejansen view the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility on Nov. 16.
NASA / Michael DeMocker

The SLS core stage, towering at 212 feet, is the backbone of the Moon rocket and includes two massive propellant tanks that collectively hold 733,000 gallons of propellant to help power the stage’s four RS-25 engines. NASA, Boeing, the core stage lead contractor, along with Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, are in the midst of conducting final integrated testing on the fully assembled rocket stage. At launch and during ascent to space, the Artemis astronauts inside NASA’s Orion spacecraft will feel the power of the rocket’s four RS-25 engines producing more than 2 million pounds of thrust for a full eight minutes. The mega rocket’s twin solid rocket boosters, which flank either side of the core stage, will each add an additional 3.6 million pounds of thrust for two minutes.

Artemis II NASA astronauts Reid Wiseman and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen view the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility in New Orleans on Nov. 16.
Artemis II NASA astronauts Reid Wiseman and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen view the core stage for the SLS (Space Launch System) rocket at the agency’s Michoud Assembly Facility in New Orleans on Nov. 16.
NASA / Michael DeMocker

The astronauts’ visit to Michoud coincided with the first anniversary of the launch of Artemis I. The uncrewed flight test of SLS and Orion was the first in a series of increasingly complex missions for Artemis as the agency works to return humans to the lunar surface and develop a long-term presence there for discovery and exploration.

NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

› Back to Top

Mission Success is in Our Hands: Jeramie Broadway

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in new testimonial banners placed around the center. This is the first in a Marshall Star series profiling team members featured in the testimonial banners.

Jeramie Broadway is the center strategy lead for the Office of the Center Director.

Jeramie Broadway is center strategy lead at NASA’s Marshall Space Flight Center.
Jeramie Broadway is center strategy lead at NASA’s Marshall Space Flight Center.
NASA/Charles Beason

Before assuming this role, Broadway was senior technical assistant to the Marshall associate director, technical, from September 2021 to October 2022. In that capacity, he supported the development, coordination, and implementation of Marshall strategic planning and partnering within NASA and across industry and academia. Prior to that detail, he was the assistant manager of Marshall’s Partnerships and Formulation Office, providing strategic planning and business development support and creating new partnering and new mission opportunities for the center.

Broadway, a Dallas, Texas, native who joined NASA full-time in 2008, began his career in Marshall’s Materials and Processes Laboratory, supporting and leading production operations for the Ares I and Space Launch System program. Over the years, he served as project engineer or deputy project manager for a variety of work, including the Nuclear Cryogenic Propulsion Stage Project, for which he led development of advanced, high-temperature nuclear fuel materials. He was assistant chief engineer for launch vehicles for NASA’s Commercial Crew Program and assistant chief engineer for NASA’s Technology Demonstration Mission Program, managed for the agency at Marshall.

Question: What are some of your key responsibilities?

Broadway: Leading and implementing the center director’s strategic vision, leveraging, and integrating the strategic business units across the Marshall Center, one of NASA’s largest field installations, with nearly 7,000 on-site and near-site civil service and contractor employees and an annual budget of approximately $4 billion. Working closely in coordination and collaboration with every center organization to ensure Marshall’s planning, workflow, and business tactics align with the agency’s strategic priorities.

Question: How does your work support the safety and success of NASA and Marshall missions?

Broadway: My work as the center strategy lead is focused on the success and viability for the Marshall of the future. I work to pursue and capture programs, projects, and opportunities for Marshall to maintain ourselves as an engineering center of excellence. We work hard capturing opportunities to develop the skills, capabilities, and expertise to safely deliver on the vision and mission of the agency.

Question: What does the Mission Success Is In Our Hands initiative mean to you?

Broadway: Mission success is the responsibility of every single person at Marshall Space Flight Center, regardless of grade, position, or civil servant or support contractor. Everyone has a vital role in the success of Marshall and our ability to deliver on our mission. We all have the ability to lean forward, break down barriers, and strive for a culture that that says ‘yes, and…’.

Question: How can we work together better to achieve mission success?

Broadway: In this pursuits culture, it will take all of us to achieve the goals and objectives set forward by the agency and center leadership. We have a vibrant future with many opportunities coming our way and it will take all of us to make that vision a reality. It will take both our mission execution and our mission support organizations to get us there.

› Back to Top

Marshall Makes Impact at University of Alabama’s 8th Annual Space Days

By Celine Smith

Team members from NASA’s Marshall Space Flight Center participated in the 8th annual Space Days at UA (University of Alabama) on Nov 14-16, where more than 500 students met with experts from NASA and aerospace companies to learn more about the space industry.

During the three-day program, Marshall team members conducted outreach presentations and updates about the Artemis missions, HLS (Human Landing System), and other NASA programs, as well as how students can get involved in NASA’s internship program.

NASA astronaut Bob Hines delivers a presentation entitled, “An Astronaut’s Journey,” during the 8th annual Space Days at the UA on Nov. 16.
NASA astronaut Bob Hines delivers a presentation entitled, “An Astronaut’s Journey,” during the 8th annual Space Days at the UA on Nov. 16.
Matthew Wood

Kicking off the event was Aaron Houin, an engineer on the aerospace vehicle design and mission analysis team at Marshall. Houin delivered a detailed presentation on orbital mechanics and vehicle properties. Houin is no stranger to the classroom, as he is currently earning his doctorate at UA’s Astrodynamics and Space Research Laboratory and was eager to give back to his alma mater.

“Having been in their position studying the same theories, I emphasized how their coursework directly applies to physics-based modeling and trajectory design,” Houin said. “I’m hopeful sharing my experiences of transitioning from the classroom to the workplace will help others find similar success.”

The Marshall team also conducted an hour-long panel discussion and Q&A segment allowing students to learn more about the fields of aerospace and aeronautic research. Panelists included Christy Gattis, cross-program integration lead, and Kent Criswell, lead systems engineer, both representing the HLS team, as well as Tim Smith, senior mission manager of the TDM (Technology Demonstration Missions) program.

From left, Tim Smith, senior mission manager of the Technology Demonstration Missions Program, joins Human Landing System team members Christy Gattis, cross-program integration lead, and Kent Criswell, lead systems engineer, in speaking with attendees following a NASA panel discussion at the University of Alabama Space Days on Nov. 16.
From left, Tim Smith, senior mission manager of the Technology Demonstration Missions Program, joins Human Landing System team members Christy Gattis, cross-program integration lead, and Kent Criswell, lead systems engineer, in speaking with attendees following a NASA panel discussion at the University of Alabama Space Days on Nov. 16.
NASA/Christopher Blair

During the panel discussion, attendees were treated with a surprise guest speaker as Eric Vanderslice, stages structures sub element lead with SLS (Space Launch System), connected virtually from the Michoud Assembly Facility. Vanderslice shared insight about “America’s Rocket Factory” and progress for the agency’s Artemis II missions, including the recent installation of all four RS-25 engines onto the 212-ft-tall SLS core stage.

UA students also received a Tech Talk presentation focused on the SCaN (Space Communications and Navigation) program and related internship opportunities from team members from NASA’s Glenn Research Center and NASA Headquarters. Panelists included Dawn Brooks, program specialist at NASA Headquarters; Timothy Gallagher, senior project lead, and Molly Kearns, digital media specialist, all three representing SCaN’s Policy and Strategic Communications office.

And in true “One NASA” collaboration, joining the Glenn contingency for this Tech Talk was once again, Tim Smith, providing related updates on the Deep Space Optical Communications and the Laser Communications Relay Demonstration experiments.

Holly Ellis, communication specialist, and Tim Smith, senior mission manager, both of the Technology Demonstration Missions Program, speak with students during Space Days at the University of Alabama on Nov. 15.
Holly Ellis, communication specialist, and Tim Smith, senior mission manager, both of the Technology Demonstration Missions Program, speak with students during Space Days at the University of Alabama on Nov. 15.
NASA/Christopher Blair

The annual Space Days event concluded with NASA astronaut Bob Hines delivering a special presentation entitled, “An Astronaut’s Journey” to nearly 100 students, staff and industry partners. Hines completed his first spaceflight as a mission specialist for NASA’s SpaceX Crew-4 mission, serving as flight engineer of Expedition 67/68 aboard the International Space Station. 

Space Days is hosted by the UA College of Engineering and their staff shared how crucial it is to have support from aerospace industry partners willing to visit campus and meet students. Key partners exhibiting and presenting included Lockheed Martin, United Launch Alliance, Alabama Space Grant Consortium, and others.

“By the time our students attend a career fair, apply for an internship, or pursue cooperative education, they will have learned about these companies in a smaller setting and begin to consider the many pathways to success,” said Tru Livaudais, director of external affairs for UA College of Engineering. “This event offers all UA students – regardless of majors and specialties – a chance to explore future career possibilities and how to be a part of the cutting-edge research and opportunities in the space industry.”

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

NASA Telescope Data Becomes Music You Can Play

For millennia, musicians have looked to the heavens for inspiration. Now a new collaboration is enabling actual data from NASA telescopes to be used as the basis for original music that can be played by humans.

Since 2020, the “sonification” project at NASA’s Chandra X-ray Center has translated the digital data taken by telescopes into notes and sounds. This process allows the listener to experience the data through the sense of hearing instead of seeing it as images, a more common way to present astronomical data.

The Galactic Center sonification, using data from NASA’s Chandra, Hubble and Spitzer space telescopes, has been translated into a new composition with sheet music and score. Working with a composer, this soundscape can be played by musicians.
The Galactic Center sonification, using data from NASA’s Chandra, Hubble, and Spitzer space telescopes, has been translated into a new composition with sheet music and score. Working with a composer, this soundscape can be played by musicians. The full score and sheet music for individual instruments is available at: https://chandra.si.edu/sound/symphony.html
Composition: NASA/CXC/SAO/Sophie Kastner

A new phase of the sonification project takes the data into different territory. Working with composer Sophie Kastner, the team has developed versions of the data that can be played by musicians.

“It’s like a writing a fictional story that is largely based on real facts,” said Kastner. “We are taking the data from space that has been translated into sound and putting a new and human twist on it.”

This pilot program focuses on data from a small region at the center of our Milky Way galaxy where a supermassive black hole resides. NASA’s Chandra X-ray Observatory, Hubble Space Telescope, and retired Spitzer Space Telescope have all studied this area, which spans about 400 light-years across.

“We’ve been working with these data, taken in X-ray, visible, and infrared light, for years,” said Kimberly Arcand, Chandra visualization and emerging technology scientist. “Translating these data into sound was a big step, and now with Sophie we are again trying something completely new for us.”

In the data sonification process, computers use algorithms to mathematically map the digital data from these telescopes to sounds that humans can perceive. Human musicians, however, have different capabilities than computers.

Kastner chose to focus on small sections of the image in order to make the data more playable for people. This also allowed her to create spotlights on certain parts of the image that are easily overlooked when the full sonification is played.

“I like to think of it as creating short vignettes of the data, and approaching it almost as if I was writing a film score for the image,” said Kastner. “I wanted to draw listener’s attention to smaller events in the greater data set.”

A musical ensemble performs soundscape that composer Sophie Katsner created using data sonifications from NASA’s Chandra, Hubble and Spitzer space telescopes. Based in Montreal, Ensemble Éclat is dedicated to the performance of contemporary classical music and promoting the works of emerging composers. (NASA/CXC/A. Jubett & Priam David)

The result of this trial project is a new composition based upon and influenced by real data from NASA telescopes, but with a human take.

“In some ways, this is just another way for humans to interact with the night sky just as they have throughout recorded history,” says Arcand. “We are using different tools but the concept of being inspired by the heavens to make art remains the same.”

Kastner hopes to expand this pilot composition project to other objects in Chandra’s data sonification collection. She is also looking to bring in other musical collaborators who are interested in using the data in their pieces.

Sophie Kastner’s Galactic Center piece is entitled “Where Parallel Lines Converge.” If you are a musician who wants to try playing this sonification at home, check out the sheet music at: https://chandra.si.edu/sound/symphony.html.

The piece was recorded by Montreal based Ensemble Éclat conducted by Charles-Eric LaFontaine on July 19, 2023, at McGill University.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

› Back to Top

Dietitian Rachel Brown Speaker for Nov. 28 Marshall Association Event

Rachel Brown, registered dietitian and certified diabetes care and education specialist, will be the guest speaker for the Marshall Association Speaker Series on Nov. 28.

The event will be 12-1 p.m. The event is free to attend and open to everyone via Teams. NASA Marshall Space Flight Center team members can attend in Building 4221, Conference Room 1103. The meeting topic follows this year’s theme of Breaking Boundaries.

Rachel Brown, registered dietitian and certified diabetes care and education specialist, will be the guest speaker for the Marshall Association Speaker Series on Nov. 28.
Rachel Brown, registered dietitian and certified diabetes care and education specialist, will be the guest speaker for the Marshall Association Speaker Series on Nov. 28.
NASA

A mom of two and a Huntsville resident since 2016, Brown is the owner of Rocket City Dietitian social media channels, where she focuses on promoting local food, fun, and fitness available in the Rocket City. She has a monthly TV segment on TN Valley Living promoting the local food scene and is a regular contributor to Huntsville Magazine, We Are Huntsville, and VisitHuntsville.org.

Email the Marshall Association for questions about the event. For more information on the Marshall Association and how to join, team members can visit their page on Inside Marshall.

› Back to Top

Cube Quest Concludes: Wins, Lessons Learned from Centennial Challenge

By Savannah Bullard

Artemis I launched from NASA’s Kennedy Space Center on Nov. 16, 2022, penning a new era of space exploration and inching the agency closer to sending the first woman and first person of color to the lunar surface.

Aboard the Space Launch System (SLS) rocket were 10 small satellites, no bigger than shoeboxes, whose goal was to detach and capably perform operations near and beyond the Moon. One of those satellites was a product of the Cube Quest Challenge, a NASA-led prize competition that asked citizen innovators to design, build, and deliver flight-qualified satellites called CubeSats that could perform its mission independently of the Artemis I mission.

The Orion Stage Adapter for Artemis I sits below as a large circle that has CubeSats secured along the inside yellow part of it.
Small satellites, called CubeSats, are shown secured inside NASA’s Orion stage adapter at NASA’s Kennedy Space Center on Aug. 5, 2021. One of these CubeSats belonged to Team Miles, one of the three finalists in the Cube Quest Centennial Challenge. The ring-shaped stage adapter was connected to the Space Launch System’s Interim Cryogenic Propulsion Stage, with the Orion spacecraft secured on top. The CubeSats’ mission was to detach from the stage adapter, then fly near and beyond the Moon to conduct a variety of science experiments and technology demonstrations to expand our knowledge of the lunar surface during the Artemis I mission.
NASA/Cory Huston

Cube Quest is the agency’s first in-space public prize competition. Opened in 2015, the challenge began with four ground-based tournaments, which awarded almost $500,000 in prizes. Three finalists emerged from the ground competition with a ticket to hitch a ride aboard the SLS as a secondary payload – and win the rest of the competition’s $5 million prize purse, NASA’s largest-ever prize offering to date – in 2022.

Of the three finalists, Team Miles was the sole team to make the trip on Artemis I successfully. Shortly after a successful deployment in space, controllers detected downlink signals and processed them to confirm whether the CubeSat was operational. This remains the latest update for the Team Miles CubeSat.

“We’re still celebrating the many wins that were borne out of Cube Quest,” said Centennial Challenges Program Manager Denise Morris. “The intent of the challenge was to reward citizen inventors who successfully advance the CubeSat technologies needed for operations on the Moon and beyond, and I believe we accomplished this.”

Innovation rarely comes without error, but according to Challenge Manager Naveen Vetcha, who supports Centennial Challenges through Jacobs Space Exploration Group, even after everything goes as expected, there is no guarantee that scientists will reach their desired outcomes.

“Given the magnitude of what we can and do accomplish every day at NASA, it comes with the territory that not every test, proposal, or idea will come out with 100 percent success,” Vetcha said. “We have set ambitious goals, and challenging ourselves to change what’s possible will inevitably end with examples of not meeting our stretch goals. But, with each failure comes more opportunities and lessons to carry forward. In the end, our competitors created technologies that will enable affordable deep space CubeSats, which, to me, is a big win.”

Although Team Miles may have made it furthest in the Cube Quest Challenge, having launched its CubeSat as a secondary payload aboard Artemis I, the team continues to participate in the challenge long after launch.

“From Team Miles, Miles Space LLC was created and is still in business,” said Jan McKenna, Team Miles’ project manager and safety lead. “Miles Space is developing and selling the propulsion system designed for our craft to commercial aerospace companies, and we’ve expanded to be able to create hardware for communications along with our CubeSat developments.”

The next steps for Miles Space LLC include seeing through their active patent applications, establishing relationships with potential clients, and continuing to hunt for a connection with their flying CubeSat. Another finalist team, Cislunar Explorers, is currently focused on using their lessons learned to benefit the global small satellite community.

“I utilized the contacts I made through Cube Quest and the other Artemis Secondary Payloads for my thesis research,” said Aaron Zucherman, Cislunar Explorers’ project manager. “This has enabled me to find partnerships and consulting work with other universities and companies where I have shared my experiences learning the best ways to build interplanetary CubeSats.”

This challenge featured teams from diverse educational and commercial backgrounds. Several team members credited the challenge as a catalyst in their graduate thesis or Ph.D. research, but one young innovator says Cube Quest completely redirected his entire career trajectory.

Project Selene team lead, Braden Oh, competed with his peers at La Cañada High School in La Cañada, California. Oh’s team eventually caught the attention of Kerri Cahoy at the Massachusetts Institute of Technology, and the designs were similar enough that Cahoy invited the two teams to merge. The exposure gained through this partnership was a powerful inspiration for Oh and his peers.

“I originally intended to apply to college as a computer science major, but my experiences in Cube Quest inspired me to study engineering instead,” Oh said. “I saw similar stories unfold for a number of my teammates; one eventually graduated from MIT and another now works for NASA.”

Cube Quest is managed out of NASA’s Ames Research Center. The competition is a part of NASA’s Centennial Challenges, which is housed at the agency’s Marshall Space Flight Center. Centennial Challenges is a part of NASA’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate.

Bullard, a Manufacturing Technical Solutions Inc. employee, supports the Marshall Office of Communications.

› Back to Top

The Heat is On! NASA’s ‘Flawless’ Heat Shield Demo Passes the Test

A little more than a year ago, a NASA flight test article came screaming back from space at more than 18,000 mph, reaching temperatures of nearly 2,700 degrees Fahrenheit before gently splashing down in the Pacific Ocean. At that moment, it became the largest blunt body – a type of reentry vehicle that creates a heat-deflecting shockwave – ever to reenter Earth’s atmosphere.

The Low-Earth Orbit Flight Test of an Inflatable Decelerator, or LOFTID, launched Nov. 10, 2022, aboard a ULA (United Launch Alliance) Atlas V rocket and successfully demonstrated an inflatable heat shield. Also known as a Hypersonic Inflatable Aerodynamic Decelerator, or HIAD, aeroshell, this technology could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.

Low-Orbit Flight Test of an Inflatable Decelerator (LOFTID) on a ship deck after reentry after the demo on November 10, 2022.
The Low-Earth Orbit Flight Test of an Inflatable Decelerator, or LOFTID, spacecraft is pictured after its atmospheric re-entry test in November 2022.
NASA/Greg Swanson

“Large-diameter aeroshells allow us to deliver critical support hardware, and potentially even crew, to the surface of planets with atmospheres,” said Trudy Kortes, director of Technology Demonstrations at NASA Headquarters. “This capability is crucial for the nation’s ambition of expanding human and robotic exploration across our solar system.”

NASA has been developing HIAD technologies for over a decade, including two smaller scale suborbital flight tests before LOFTID. In addition to this successful tech demo, NASA is investigating future applications, including partnering with commercial companies to develop technologies for small satellite reentry, aerocapture, and cislunar payloads.

“This was a keystone event for us, and the short answer is: It was highly successful,” said LOFTID Project Manager Joe Del Corso. “Our assessment of LOFTID concluded with the promise of what this technology may do to empower the exploration of deep space.”

Due to the success of the LOFTID tech demo, NASA announced under its Tipping Point program that it would partner with ULA to develop and deliver the “next size up,” a larger 12-meter HIAD aeroshell for recovering the company’s Vulcan engines from low Earth orbit for reuse.

The LOFTID team recently held a post-flight analysis assessment of the flight test at NASA’s Langley Research Center. Their verdict?

Upon recovery, the team discovered LOFTID appeared pristine, with minimal damage, meaning its performance was, as Del Corso puts it, “Just flawless.”

View some interesting visual highlights from LOFTID’s flight test.

LOFTID splashed down in the Pacific Ocean several hundred miles off the east coast of Hawaii and only about eight miles from the recovery ship’s bow – almost exactly as modeled. A crew got on a small boat and retrieved and hoisted LOFTID onto the recovery ship.

“The LOFTID mission was important because it proved the cutting-edge HIAD design functioned successfully at an appropriate scale and in a relevant environment,” said Tawnya Laughinghouse, manager of the TDM (Technology Demonstrations Missions) program office at NASA’s Marshall Space Flight Center.

Marshall supported the Langley-led LOFTID project, providing avionics flight hardware, including the data acquisition system, the inertial measurement unit, and six camera pods. Marshall engineers also performed thermal and fluids analyses and modeling in support of the LOFTID re-entry vehicle inflation system and aeroshell designs.

The LOFTID demonstration was a public private-partnership with ULA funded by STMD and managed by the Technology Demonstration Mission Program, executed by NASA Langley with contributions from across NASA centers. Multiple U.S. small businesses contributed to the hardware. NASA’s Launch Services Program was responsible for NASA’s oversight of launch operations.

› Back to Top

Powered by WPeMatico

Get The Details…
Lee Mohon

La Movilidad Aérea Avanzada Ayuda al Transporte de Mercancías

La Movilidad Aérea Avanzada Ayuda al Transporte de Mercancías

4 min read

La Movilidad Aérea Avanzada Ayuda al Transporte de Mercancías

Ilustración artística que muestra un avión de reparto de carga no tripulado y drones de reparto de paquetes pequeños en uso.
La NASA está especialmente calificada para ayudar a revolucionar el sector del transporte de carga con Movilidad Aérea Avanzada para encontrar soluciones que faciliten el transporte de paquetes de forma más rápida y ecológica, utilizando grandes aviones para el transporte de carga y pequeños drones para la entrega de paquetes, como se ve en esta imagen conceptual.
NASA / Kyle Jenkins

Lee esta historia en inglés aquí.

Hoy podemos recibir paquetes más rápido que antes gracias a los pedidos en línea y los servicios de entrega rápida. La demanda de este tipo de entrega rápida sigue aumentando y se necesitan nuevos medios de transporte de carga para mantener el ritmo.

La NASA está especialmente cualificada para ayudar a revolucionar el sector del transporte de carga con Movilidad Aérea Avanzada (AAM por sus siglas en inglés) para encontrar soluciones que faciliten el transporte de paquetes de forma más rápida y ecológica, utilizando grandes aviones para el transporte de carga y pequeños drones para la entrega de paquetes. Ahora mismo, la NASA está colaborando con Elroy Air y Reliable Robotics, que están diseñando prototipos de aviones de reparto de carga con Movilidad Aérea Avanzada. El objetivo de la asociación es aprender más sobre estas aeronaves a medida que se construyen y prueban.

“Vemos que el transporte de carga no tiene las mismas dificultades que el transporte de humanos, así que es una buena  manera de generar experiencia y confianza en estas nuevas operaciones de aviación antes de que se extiendan al transporte de personas”, explica Kurt Swieringa, director adjunto de tecnología del proyecto de exploración de la gestión del tráfico aéreo (Air Traffic Management eXploration ATM-X).

La NASA está investigando cómo se van a integrar estas nuevas aeronaves en el medio aeroportuario existente y en el espacio aéreo estadounidense en su conjunto. La idea es utilizar muchos aviones para transportar grandes cantidades de carga y paquetes modo bajo demanda. El sistema actual de gestión del tráfico aéreo no puede gestionar la escala de operaciones que prevé la misión AAM de la NASA, así que será necesario recurrir más a las comunicaciones digitales y a la autonomía para integrar con seguridad estas nuevas operaciones en el espacio aéreo.

La Movilidad Aérea Avanzada se centrará en encontrar soluciones seguras para transportar más paquetes por el aire y en investigar las áreas de gestión del tráfico aéreo, automatización, diseño de aeronaves y garantía de seguridad que es necesario combinar para hacer realidad estas operaciones. Las agencias gubernamentales, la industria y el público deberán combinar sus esfuerzos para integrar de forma segura esta nueva clase de aeronaves.

La visión de la NASA es diseñar nuevos sistemas de transporte aéreo seguros, accesibles y económicos junto con socios de la industria y la comunidad y la Administración Federal de Aviación. Estas nuevas capacidades permitirían a los pasajeros y los cargamentos viajar a modo bajo demanda en aviones innovadores y automatizados por toda la ciudad, entre ciudades vecinas o a otros lugares a los que hoy en día se suele acceder en coche.

La visión de la NASA para la Movilidad Aérea Avanzada, o AAM por sus siglas en inglés, es trazar un nuevo sistema de transporte aéreo seguro, accesible y económico junto con socios de la industria, socios comunitarios y la Administración Federal de Aviación (FAA por sus siglas en inglés). En este episodio del Manual de Movilidad Aérea Avanzada de la NASA, hablamos del futuro del transporte de mercancías y de cómo la investigación AAM de la NASA está contribuyendo a su desarrollo.

Artículo Traducido por: Elena Aguirre

Share

Details

Last Updated

Nov 22, 2023

Editor

Lillian Gipson

Contact

Jim Banke
jim.banke@nasa.gov

Powered by WPeMatico

Get The Details…
Lillian Gipson