Join NASA to Celebrate Worm Design, Influence with Original Designer

Join NASA to Celebrate Worm Design, Influence with Original Designer

2 min read

Join NASA to Celebrate Worm Design, Influence with Original Designer

Dr. Christine Mann Darden holding a model of Mach II in the Unitary Tunnel at NASA’s Langley Research Center on Aug. 18, 1990. Darden is pictured in a lab coat with a NASA ‘worm’ logotype patch across her back.
NASA / Carol Petrachenko Chapman

Media are invited to hear a discussion on the design and cultural significance of the worm logotype with NASA and its creator Richard Danne at 11:30 a.m. EST on Monday, Nov. 6, at the agency’s headquarters in Washington.

The logotype, a simple, red unique type style of the word NASA, replaced the agency’s official logo (meatball) for several decades beginning in the 1970s before it was retired. The worm has since been revived for limited use.

The event will air live on NASA Television, the NASA appYouTube, and on the agency’s website. Learn how to stream NASA TV through a variety of platforms.

Following opening remarks by Marc Etkind, associate administrator for NASA’s Office of Communications at NASA Headquarters, Danne and David Rager, creative art director at NASA, will provide remarks followed by a panel discussion with Danne and others including:

  • Bert Ulrich, entertainment and branding liaison, NASA Headquarters
  • Michael Beirut, designer, Pentagram
  • Shelly Tan, design reporter, The Washington Post (moderator)
  • Julia Heiser, head of live event merchandise, Amazon Music

NASA experts and Danne are available for on-site interviews, as well as remote interviews after the event.

Media interested in participating in person must RSVP to the NASA Headquarters newsroom by 3 p.m. on Friday, Nov. 3, at hq-media@mail.nasa.gov. NASA’s media accreditation policy is online.

The televised event will take place in the agency’s Webb Auditorium in the West Lobby inside NASA Headquarters located at 300 E St. SW in Washington.

Learn more about NASA’s missions at:

https://www.nasa.gov

-end-

News Media Contacts:

Claire O’Shea / Melissa Howell
Headquarters, Washington
202-358-1600
claire.a.oshea@nasa.gov / melissa.e.howell@nasa.gov

Share

Details

Last Updated

Oct 27, 2023

Related Terms

Powered by WPeMatico

Get The Details…
Claire A. O’Shea

NASA Rocket to See Sizzling Edge of Star-Forming Supernova

NASA Rocket to See Sizzling Edge of Star-Forming Supernova

5 min read

NASA Rocket to See Sizzling Edge of Star-Forming Supernova

A new sounding rocket mission is headed to space to understand how explosive stellar deaths lay the groundwork for new star systems. The Integral Field Ultraviolet Spectroscopic Experiment, or INFUSE, sounding rocket mission, will launch from the White Sands Missile Range in New Mexico on Oct. 29, 2023, at 9:35 p.m. MDT.

For a few months each year, the constellation Cygnus (Latin for “swan”) swoops through the northern hemisphere’s night sky. Just above its wing is a favorite target for backyard astronomers and professional scientists alike: the Cygnus Loop, also known as the Veil Nebula.

This image shows an illustration of the constellation Cygnus, Latin for “swan,” in the night sky. The Cygnus Loop supernova remnant, also known as the Veil Nebula, is located near one of the swan’s wings, outlined here in a rectangular box.
NASA

The Cygnus Loop is the remnant of a star that was once 20 times the size of our Sun. Some 20,000 years ago, that star collapsed under its own gravity and erupted into a supernova. Even from 2,600 light-years away, astronomers estimate the flash of light would have been bright enough to see from Earth during the day.

This image taken by NASA’s Hubble Space Telescope shows part of the Veil Nebula or Cygnus Loop. To create this colorful image, observations were taken by Hubble’s Wide Field Camera 3 instrument using five different filters. New post-processing methods have further enhanced details of emissions from doubly ionized oxygen (shown here in shades of blue), ionized hydrogen, and ionized nitrogen (shown here in shades of red).
ESA/Hubble & NASA, Z. Levay

Supernovae are part of a great life cycle. They spray heavy metals forged in a star’s core into the clouds of surrounding dust and gas. They are the source of all chemical elements in our universe heavier than iron, including those that make up our own bodies. From the churned-up clouds and star stuff left in their wake, gases and dust from supernovae gradually clump together to form planets, stars, and new star systems.

“Supernovae like the one that created the Cygnus Loop have a huge impact on how galaxies form,” said Brian Fleming, a research professor at the University of Colorado Boulder and principal investigator for the INFUSE mission.

The Cygnus Loop provides a rare look at a supernova blast still in progress. Already over 120 light-years across, the massive cloud is still expanding today at approximately 930,000 miles per hour (about 1.5 million kilometers per hour).

What our telescopes capture from the Cygnus Loop is not the supernova blast itself. Instead, we see the dust and gas superheated by the shock front, which glows as it cools back down.

“INFUSE will observe how the supernova dumps energy into the Milky Way by catching light given off just as the blast wave crashes into pockets of cold gas floating around the galaxy,” Fleming said.

To see that shock front at its sizzling edge, Fleming and his team have developed a telescope that measures far-ultraviolet light – a kind of light too energetic for our eyes to see. This light reveals gas at temperatures between 90,000 and 540,000 degrees Fahrenheit (about 50,000 to 300,000 degrees Celsius) that is still sizzling after impact.

INFUSE is an integral field spectrograph, the first instrument of its kind to fly to space. The instrument combines the strengths of two ways of studying light: imaging and spectroscopy. Your typical telescopes have cameras that excel at creating images – showing where light is coming from, faithfully revealing its spatial arrangement. But telescopes don’t separate light into different wavelengths or “colors” – instead, all of the different wavelengths overlap one another in the resulting image.

Spectroscopy, on the other hand, takes a single beam of light and separates it into its component wavelengths or spectrum, much as a prism separates light into a rainbow. This procedure reveals all kinds of information about what the light source is made of, its temperature, and how it is moving. But spectroscopy can only look at a single sliver of light at a time. It’s like looking at the night sky through a narrow keyhole.

The INFUSE instrument captures an image and then “slices” it up, lining up the slices into one giant “keyhole.” The spectrometer can then spread each of the slices into its spectrum. This data can be reassembled into a 3-dimensional image that scientists call a “data cube” – like a stack of images where each layer reveals a specific wavelength of light.

PhD student Emily Witt installs the delicate image slicer – the core optical technology for INFUSE – onto its mount in a CU-LASP clean room ahead of integration into the payload.
CU Boulder LASP/Brian Fleming

Using the data from INFUSE, Fleming and his team will not only identify specific elements and their temperatures, but they’ll also see where those different elements lie along the shock front.

“It’s a very exciting project to be a part of,” said lead graduate student Emily Witt, also at CU Boulder, who led most of the assembly and testing of INFUSE and will lead the data analysis. “With these first-of-their-kind measurements, we will better understand how these elements from the supernova mix with the environment around them. It’s a big step toward understanding how material from supernovas becomes part of planets like Earth and even people like us.”

To get to space, the INFUSE payload will fly aboard a sounding rocket. These nimble, crewless rockets launch into space for a few minutes of data collection before falling back to the ground. The INFUSE payload will fly aboard a two-stage Black Brant 9 sounding rocket, aiming for a peak altitude of about 150 miles (240 kilometers), where it will make its observations, before parachuting back to the ground to be recovered. The team hopes to upgrade the instrument and launch again. In fact, parts of the INFUSE rocket are themselves repurposed from the DEUCE mission, which launched from Australia in 2022.

NASA’s Sounding Rocket Program is conducted at the agency’s Wallops Flight Facility at Wallops Island, Virginia, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA’s Heliophysics Division manages the sounding rocket program for the agency. The development of the INFUSE payload was supported by NASA’s Astrophysics Division.

Powered by WPeMatico

Get The Details…

Progress Continues Toward NASA’s Boeing Crew Flight Test to Station

Progress Continues Toward NASA’s Boeing Crew Flight Test to Station

NASA and Boeing are working to complete the agency’s verification and validation activities ahead of Starliner’s first flight with astronauts to the International Space Station. While Boeing is targeting March to have the spacecraft ready for flight, teams decided during a launch manifest evaluation that a launch in April will better accommodate upcoming crew rotations and cargo resupply missions this spring.

Inside Boeing’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Jan. 19, 2023, the Starliner team works to finalize the mate of the crew module and new service module for NASA's Boeing Crew Flight Test.
The Starliner team works to finalize the mate of the crew module and new service module for NASA’s Boeing Crew Flight Test that will take NASA astronauts Barry “Butch” Wilmore and Sunita “Suni” Williams to and from the International Space Station.
Boeing/John Grant

Once the spacecraft meets the agency’s safety requirements, NASA’s Boeing Starliner Crew Flight Test (CFT) will see astronauts Butch Wilmore and Suni Williams perform the first crewed mission of the spacecraft designed to take astronauts to and from the orbital laboratory.

Ahead of CFT, Boeing has completed P213 tape removal in the upper dome of the Starliner crew compartment and work is underway to remove or remediate the tape in the lower dome of the spacecraft. These hardware remediation efforts inside the Starliner production facility at NASA Kennedy are expected to be completed during the next several weeks. After the P213 tape remediation efforts conclude, engineers will conduct final assessments to ensure acceptable risk of any remaining tape.

A set of parachutes is on track to be delivered and installed on the CFT spacecraft by the end of this year to support the current target launch date. Separately, the team also is planning a drop test of Starliner’s updated drogue and main parachutes. The parachutes will incorporate a planned strengthening of main canopy suspension lines and the recent design of the drogue and main parachute soft-link joints, which will increase the safety factor for the system. The drop test is planned for early 2024 based on the current parachute delivery schedule.

Boeing and NASA also are planning modifications to the active thermal control system valves to improve long-term functionality following a radiator bypass valve issue discovered during ground operations earlier this year. As discussed during a Starliner media teleconference in June, teams have modified the spacecraft hardware and identified forward work to prevent a similar issue in the future. Options include a system purge to prevent stiction, component upgrades and operational mitigations.

Additionally, about 98% of the certification products required for the flight test are complete, and NASA and Boeing anticipate closure on remaining CFT certification products early next year. Meanwhile, NASA and Boeing have made significant progress on requirement closures related to manual crew control of the spacecraft and abort system analysis.

The latest version of Starliner’s CFT flight software completed qualification testing and is undergoing standard hardware and software integration testing inside Boeing’s Avionics and Software Integration Lab. Starliner’s crew and service modules remain mated and await continuation of standard preflight processing.

The United Launch Alliance Atlas V rocket also is in Florida at Cape Canaveral Space Force Station awaiting integration with the spacecraft.

The NASA astronauts who will fly aboard CFT continue to train for their roughly eight-day mission to the orbiting laboratory, which includes working with operations and mission support teams to participate in various simulations across all phases of flight.

Starliner completed two uncrewed flight tests, including Orbital Flight Test-2, which docked to the space station on May 21, 2022, following a launch two days prior from Kennedy. The spacecraft remained docked to space station for four days before successfully landing at the White Sands Missile Range in New Mexico.

Follow NASA’s commercial crew blog or CFT mission blog for the latest information on progress. Details about NASA’s Commercial Crew Program can be found by following the commercial crew blog@commercial_crew on X, and commercial crew on Facebook.

Powered by WPeMatico

Get The Details…
Danielle Sempsrott

Aviones de movilidad aérea avanzada: un viaje suave en el futuro

Aviones de movilidad aérea avanzada: un viaje suave en el futuro

4 min read

Aviones de movilidad aérea avanzada: un viaje suave en el futuro

Electrical vertical takeoff and landing aircraft (eVTOLs), like the one shown in this concept art, could be a crucial part of the next generation of air transportation.
Los aviones eléctricos de despegue y aterrizaje vertical, como el que se muestra en este diseño conceptual, podrían ser una parte fundamental de la próxima generación de transporte aéreo. Para crear un mercado realmente viable, los diseñadores tendrán que crear una experiencia cómoda para el pasajero. La misión de movilidad aérea avanzada de la NASA está investigando la calidad del viaje para comprender mejor cómo se deben diseñar estas aeronaves.
Gráficos de la NASA/Kyle Jenkins

Lee esta historia en inglés aquí.

Hoy en día, los pasajeros de avión esperan un viaje tranquilo con pocas turbulencias. Aunque las turbulencias no siempre pueden evitarse, las consideraciones y diseños de los aviones limitan lo que siente el pasajero.

Los aviones eléctricos de despegue y aterrizaje vertical (eVTOL por sus siglas en inglés) podrían ser una parte fundamental de la próxima generación de transporte aéreo, pero para crear un mercado viable, los diseñadores tendrán que crear una experiencia cómoda para el pasajero.

La misión de Movilidad Aérea Avanzada (AAM por sus siglas en inglés) de la NASA está investigando la calidad de viajes para comprender mejor cómo deben diseñarse estas aeronaves para una experiencia ideal del pasajero. La investigación de la NASA proporciona orientación de diseño a los fabricantes de la industria para garantizar que los pasajeros disfruten de un viaje tranquilo y seguro.

“Nosotros creemos que las aeronaves de AAM deberán tener un bajo nivel de ruido en la cabina, una baja vibración de los rotores y ser más resistentes a las turbulencias”, dijo Carlos Malpica, jefe técnico de dinámica y control de vuelo del proyecto de tecnología de elevación vertical revolucionaria (RVLT por sus siglas en inglés) de la NASA. “Tendrán que ser volados de una manera predecible, repetible y no agresiva que no resulte en aceleraciones o rotaciones repentinas de la aeronave”.

La misión AAM de la NASA está investigando la respuesta fisiológica humana a los estímulos de movimiento, vibración y ruido que el equipo espera que experimenten los pasajeros en los aviones eVTOL.

El año pasado, el proyecto RVLT llevó un estudio en el Simulador de Movimiento Vertical del Centro de Investigación Ames de la NASA en Silicon Valley (California). Voluntarios que se hicieron pasar por pasajeros experimentaron dos vuelos de simulador de corta duración en diferentes niveles de turbulencia. Un viaje fue tranquilo y el otro agitado. El estudio examinó la susceptibilidad al mareo en estas condiciones en aviones eVTOL. La NASA está planeando otros estudios de este tipo para mejor comprender las consecuencias para los pasajeros.

La misión AAM incluye varios proyectos centrados en distintas áreas para ayudar a que los aviones eVTOL y otras aeronaves innovadoras vuelen por los cielos. Esto incluye trabajos sobre automatización, ruido, vertipuertos y diseño de vehículos, así como integración del espacio aéreo para mantener la seguridad de todos mientras vuelan. Las agencias gubernamentales, la industria y el público necesitarán combinar sus esfuerzos para construir nuevas autopistas en el cielo.

La visión de la NASA consiste en diseñar nuevos sistemas de transporte aéreo seguros, accesibles y económicos junto con socios de la industria, la comunidad, y la Administración Federal de Aviación. Estas nuevas capacidades permitirían a los pasajeros y a la carga viajar a pedido en aviones innovadores y automatizados a través de la ciudad, entre ciudades vecinas o a otros lugares a los que hoy en día se suele acceder en automóvil.

La visión de la NASA para la Movilidad Aérea Avanzada, o AAM por sus siglas en inglés, es trazar un nuevo sistema de transporte aéreo seguro, accesible y económico junto con socios de la industria, socios comunitarios y la Administración Federal de Aviación (FAA por sus siglas en inglés). La NASA está investigando cómo podría ser la calidad del viaje para los pasajeros que viajan en aviones eléctricos de despegue y aterrizaje vertical para asegurarse de que es un viaje tranquilo y seguro. En este episodio del Manual de Movilidad Aérea Avanzada de la NASA, analizamos cómo la NASA está especialmente cualificada para esta investigación y por qué es importante para el futuro del vuelo.

Artículo Traducido por: Elena Aguirre

Share

Details

Last Updated

Oct 26, 2023

Editor

Lillian Gipson

Contact

Jim Banke
jim.banke@nasa.gov

Powered by WPeMatico

Get The Details…
Lillian Gipson

Artemis II Water Deluge Test

Artemis II Water Deluge Test

A large amount of water cascades over the edges of the gray mobile launcher at NASA's Kennedy Space Center. Droplets of water also spray up through the air, creating a mist.
NASA / Kim Shiflett

NASA’s Exploration Ground Systems conducts a water flow test with the mobile launcher at NASA’s Kennedy Space Center’s in Florida on Oct. 24, 2023. It is the third in a series of tests to verify the overpressure protection and sound suppression system is ready for launch of the Artemis II mission.

During liftoff, 400,000 gallons of water will rush onto the pad to help protect NASA’s Space Launch System rocket, Orion spacecraft, mobile launcher, and launch pad from any overpressurization and extreme sound produced during ignition and liftoff.

Artemis II is the first crewed mission under Artemis and will test all the Orion spacecraft’s systems with astronauts aboard.

Get Artemis II updates on the blog.

Image credit: NASA/Kim Shiflett

Powered by WPeMatico

Get The Details…
Monika Luabeya