Astronaut Loral O’Hara tries on her spacesuit

Astronaut Loral O’Hara tries on her spacesuit

NASA astronaut and Expedition 70 Flight Engineer Loral O'Hara is pictured trying on her spacesuit and testing its components aboard the International Space Station's Quest airlock in preparation for an upcoming spacewalk.
iss070e002032 (Oct. 4, 2023) — NASA astronaut and Expedition 70 Flight Engineer Loral O’Hara is pictured trying on her spacesuit and testing its components aboard the International Space Station’s Quest airlock in preparation for an upcoming spacewalk.
NASA

Powered by WPeMatico

Get The Details…
Mark A. Garcia

NASA’s Honey Astrobee Robot Returns to Space

NASA’s Honey Astrobee Robot Returns to Space

The interior of the International Space Station, where an astronaut holds a a cube-shaped robot.
NASA astronaut Woody Hoburg examines a recently unpacked Astrobee free-flying robot aboard the International Space Station. The Astrobee system is a research platform exploring how robots can maintain spacecraft.
NASA

The International Space Station is abuzz with the return of one of NASA’s Astrobee smart robots. The yellow Honey Astrobee, one of three free-flying robots, was unboxed in space after spending nearly a year at its home base, NASA’s Ames Research Center in California’s Silicon Valley. Honey returned to Earth in September 2022 for maintenance and repairs.

NASA astronaut Woody Hoburg helped unpack Honey from its flight container and verified the robot was ready to get back to work. After initial checks, Honey was able to independently disengage from its docking station, maneuver through the space station’s Japanese Experiment Module (JEM), and re-dock successfully without crew supervision.

The Astrobee Facility provides the orbiting laboratory with a robotic system for research and STEM (Science, Technology, Engineering, and Mathematics) outreach. Astrobee consists of three cubed-shaped robots, software, and a docking station used for recharging. The robots, which use electric fans as propulsion in the microgravity of the space station, aim to help manage routine spacecraft tasks so that astronauts can focus on jobs that only humans can perform. The project provides payload opportunities as well as guidance to users from academia, private industry, NASA, and other government agencies in the execution of approved research and STEM objectives.

Astrobee was funded by NASA’s Game Changing Development Program, part of the Space Technology Mission Directorate. Ongoing funding is provided by NASA’s International Space Station Utilization Office.

Powered by WPeMatico

Get The Details…
Arezu Sarvestani

A Bear on Mars?

A Bear on Mars?

A geographical feature on Mars looks like the face of a bear in this black and white image acquired by NASA's Mars Reconnaissance Orbiter.
NASA/JPL-Caltech/University of Arizona

The Mars Reconnaissance Orbiter (MRO) captured this bit of ursine pareidolia on Dec. 12, 2022. While it resembles a bear we might see on Earth, this is actually a hill on Mars with a peculiar shape. A V-shaped collapse structure makes the nose, two craters form the eyes, and a circular fracture pattern shapes the head. The circular fracture pattern might be due to the settling of a deposit over a buried impact crater.

Launched on August 12, 2015, the MRO studies the history of water on Mars and observes small-scale features on the planet’s surface. See more examples of pareidolia—the human tendency to see recognizable shapes in unfamiliar objects or data—from Mars.

Image Credit: NASA/JPL-Caltech/University of Arizona

Powered by WPeMatico

Get The Details…
Monika Luabeya

6 Things to Know About NASA’s Asteroid-Exploring Psyche Mission

6 Things to Know About NASA’s Asteroid-Exploring Psyche Mission

6 min read

6 Things to Know About NASA’s Asteroid-Exploring Psyche Mission

This illustration depicts NASA's Psyche spacecraft as it approaches the asteroid Psyche.
This illustration depicts NASA’s Psyche spacecraft as it approaches the asteroid Psyche. Once it arrives in 2029, the spacecraft will orbit the metal-rich asteroid for 26 months while it conducts its science investigation.
NASA/JPL-Caltech/ASU

The first-ever mission to study a metal-rich asteroid, Psyche aims to help scientists learn more about the formation of rocky bodies in our solar system.

With a launch readiness date set for Thursday, Oct. 12, NASA’s Psyche spacecraft will travel 2.2 billion miles from NASA’s Kennedy Space Center in Florida to a metal-rich asteroid in the far reaches of the main asteroid belt between Mars and Jupiter. Trailing a blue glow from its thrusters and powered by a pair of massive solar arrays, the orbiter will use its payload of science instruments to learn more about the asteroid Psyche.

Here are six things to know about the mission:

1. Learning more about the asteroid Psyche could tell us more about the origins of our solar system.

Based on data obtained by Earth-based radar and optical telescopes, scientists hypothesize that the asteroid Psyche could be part of the metal-rich interior of a planetesimal, a building block of a rocky planet that never formed. Psyche may have collided with other large bodies during its early formation and lost its outer rocky shell. Humans can’t bore a path to Earth’s metal core, so visiting Psyche could provide a one-of-a-kind window into the history of violent collisions and accumulation of matter that created planets like our own.

Scientists hypothesize that the asteroid Psyche could be part of a building block of the rocky planets in our solar system. Studying it up close could help us understand how rocky planets formed. Join us on the journey to the first metal-rich asteroid humankind has ever visited. Credit: NASA/JPL-Caltech/ASU 

2. The asteroid could also suggest a different story of how solar system objects formed.

While rocks on Mars, Venus, and Earth are flush with iron oxides, Psyche’s surface doesn’t seem to feature much of these chemical compounds. This suggests that Psyche’s history differs from standard stories of planetary formation.

If the asteroid proves to be leftover core material from a planetary building block, scientists will learn how its history resembles and diverges from that of the rocky planets. And if scientists discover that Psyche is not an exposed core, it may prove to be a never-before-seen kind of primordial solar system object.

3. Three science instruments and a gravity science investigation will help sort out these solar system origin stories and more.

The spacecraft’s magnetometer will look for evidence of an ancient magnetic field at the asteroid Psyche. A residual magnetic field would be strong evidence the asteroid formed from the core of a planetary body.

The orbiter’s gamma-ray and neutron spectrometer will help scientists determine the chemical elements that make up the asteroid – and better understand how it formed.

The spacecraft’s multispectral imager will provide information about the mineral composition of Psyche as well as its topography.

The mission’s science team will harness the telecommunications system to conduct gravity science. By analyzing the radio waves the spacecraft communicates with, scientists can measure how the asteroid Psyche affects the spacecraft’s orbit. That information will help them determine the asteroid’s rotation, mass, and gravity field, offering additional insights into the composition and structure of the asteroid’s interior.

4. The spacecraft will use a very efficient propulsion system for the first time beyond the Moon.

Powered by Hall-effect thrusters, Psyche’s solar electric propulsion system harnesses energy from large solar arrays to create electric and magnetic fields. These, in turn, accelerate and expel charged atoms, or ions, of a propellant called xenon (a neutral gas used in car headlights and plasma TVs) at such high speed, it creates thrust. The ionized gas, will emit a sci-fi-like blue glow as it trails behind Psyche in space. Each of Psyche’s four thrusters, which will operate one at a time, exert the same amount of force that you would feel holding three quarters in the palm of your hand. In the frictionless void of space, the spacecraft will slowly and continuously accelerate.

This propulsion system builds on similar technologies used by NASA’s Dawn mission, but Psyche will be the agency’s first mission to use Hall-effect thrusters in deep space.

5. Psyche is a collaboration.

The mission draws on resources and know-how from NASA, universities, and industry. The principal investigator, Lindy Elkins-Tanton, is based at Arizona State University. By enabling collaboration with students nationwide, the partnership offers opportunities to train future instrument and mission leads in science and engineering, and to inspire student projects involving art, entrepreneurship, and innovation. Over a dozen other universities and research institutions are represented on the mission team.

NASA’s Jet Propulsion Laboratory in Southern California manages the mission for the agency’s Science Mission Directorate in Washington. Managed for NASA by Caltech in Pasadena, JPL is also responsible for system engineering, integration and test, and mission operations.

NASA’s Launch Services Program at Kennedy Space Center manages launch operations and procured the SpaceX Falcon Heavy rocket.

Maxar Technologies’ team in Palo Alto, California, delivered the solar electric propulsion chassis – the main body of the spacecraft – and most of its engineering hardware systems.

6. The Psyche mission wants you to be part of the journey, too.

Space exploration is for everyone. The mission’s “get involved” webpage highlights activities and opportunities, including an annual internship for college students to interpret the mission through artistic and other creative works, as well as classroom lessons, craft projects, and videos. Information on how to participate in a virtual launch experience is at nasa.gov/specials/virtualguest/.

The mission websites nasa.gov/psyche and psyche.asu.edu will post official news about the spacecraft’s journey. NASA and ASU will also post regular social media updates on Facebook, Instagram, and X.

NASA’s Eyes on the Solar System, a free web-based 3D visualization tool, will track the location of the spacecraft in real time. Visit go.nasa.gov/45k0OVY to see where Psyche is in the solar system.

About two months after launch, as the team performs an initial checkout of the spacecraft and science instruments, the mission expects to receive its first images. Once the team confirms the imager is functioning as expected, a webpage will feature the unprocessed, or raw, images flowing straight from the spacecraft.

More About the Mission

A technology demonstration called Deep Space Optical Communications (DSOC) will fly on Psyche in order to test high-data-rate laser communications that could be used by future NASA missions. JPL manages DSOC for the Technology Demonstration Missions program within NASA’s Space Technology Mission Directorate and the Space Communications and Navigation program within the Space Operations Mission Directorate.

Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

For more about the mission, go to:

https://www.nasa.gov/psyche

News Media Contacts

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-6215
gretchen.p.mccartney@jpl.nasa.gov 

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2023-141

Share

Details

Last Updated

Oct 05, 2023

Powered by WPeMatico

Get The Details…
Randal K. Jackson

STEM Learning Resources to Prepare for Upcoming Eclipses

STEM Learning Resources to Prepare for Upcoming Eclipses

A black circle is in the middle of the image. Surrounding the circle is a thin strip of white peaking out from the edges. Flowing off that white strip are white and blue, whispy streams of light, which fill most of the black background of the image.

The Sun and Moon will work together to put on a celestial show in the skies above North America during two solar eclipses in the months to come. On Saturday, Oct. 14, the Moon will nearly cover the Sun during what’s called an annular solar eclipse, and on April 8, 2024, the Moon will completely block out the Sun during a total solar eclipse. Get ready to make the most of these rare events with this curated list of NASA STEM learning resources and related content, including activities, citizen science opportunities, and more.

Safety First!

First things first! It’s important never to look directly at the Sun, even during a solar eclipse. Protect your eyes with specialized solar viewers, such as eclipse glasses or view the event with a pinhole projector check out these video instructions on how to make your own. You can learn more about eclipse viewing safety here.

A boy watches the total solar eclipse through protective glasses in Madras, Oregon on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo

What You’ll See

During the annular solar eclipse on Oct. 14, the Moon will appear smaller when it slips in front of the Sun’s disk, leaving a ring of sunlight visible for people on the main path of the eclipse. During the total solar eclipse in April, the Moon will fully block the Sun for a brief time for people on the main path of this eclipse. For both eclipses, people in most of the U.S. can see a partial solar eclipse, even if you’re not on the eclipse’s main path.

Wondering how much of the Sun will be blocked by the Moon where you are? Use this map to find out what the view will be like in your area, since the eclipses will take different paths as they cross the United States.

A partial solar eclipse is seen as the sun rises to the left of the United States Capitol building, Thursday, June 10, 2021, as seen from Arlington, Virginia. The annular or “ring of fire” solar eclipse is only visible to some people in Greenland, Northern Russia, and Canada.

Learn What’s Happening

Students are invited to visit NASA’s Space Place for a helpful overview of eclipses and a deeper look at what happens during a total solar eclipse. Learn even more through fun hands-on activities such as How Can the Little Moon Hide the Giant Sun and the solar eclipse beach ball demonstration. Looking for books? Read “Our Very Own Star,” or the Braille book “Getting a Feel for Eclipses,” available in English and Spanish.

Educators can bring solar eclipse learning into the classroom with eclipse lessons from My NASA Data, the Epic Eclipse: A “Pi in the Sky” math challenge, and the Living With a Star educator guide, which explores the Sun-Earth connection. Other fun activities include learning how to measure solar energy during the eclipse, taking the new NASA Eclipse Kahoot! Quiz modeling the Earth-Moon system.

Two people with protective glasses to prepare for upcoming eclipses

Be an Eclipse Scientist

Anyone can become a citizen scientist and contribute their eclipse observations! Here are two exciting opportunities:

  • Eclipse Soundscapes: Share your multi-sensory observations and recorded sound data during the upcoming eclipses to help NASA better understand how these events impact ecosystems across the U.S. Learn more about the different options to get involved.
  • GLOBE Eclipse: Only available when a solar eclipse is happening somewhere in the world, the GLOBE Eclipse tool will prompt users to record air temperature measurements in addition to observations of sky conditions and vegetation at the data collection site. You’ll need to download the GLOBE App to get started.
Juniper Doucette with her mother Chloe Doucette, head of education at the museum of Idaho Falls, celebrate the 2017 total solar eclipse.

For the latest fun activities, learning resources, and opportunities to engage with NASA, visit NASA’s Office of STEM Engagement online at: https://stem.nasa.gov

Powered by WPeMatico

Get The Details…
Sandra May