30 Years Ago: The STS-58 Spacelab Life Sciences-2 Mission

30 Years Ago: The STS-58 Spacelab Life Sciences-2 Mission

On Oct. 18, 1993, space shuttle Columbia lifted off in support of the STS-58 Spacelab Life Sciences 2 (SLS-2) mission to conduct cutting edge research on physiological adaptation to spaceflight. The seven-member crew of STS-58 consisted of Commander John E. Blaha, Pilot Richard A. Searfoss, Payload Commander Dr. M. Rhea Seddon, Mission Specialists William S. McArthur, Dr. David A. Wolf, and Shannon M. Lucid, and Payload Specialist Dr. Martin J. Fettman, the first veterinarian in space. Dr. Jay C. Buckey  and Laurence R. Young served as alternate payload specialists. During the second dedicated life sciences shuttle mission, they conducted 14 experiments to study the cardiovascular, pulmonary, regulatory, neurovestibular, and musculoskeletal systems to provide a better understanding of physiological responses to spaceflight. The 14-day mission ended on Nov. 1, the longest shuttle flight up to that time.

STS-58 astronauts David A. Wolf, seated left, Shannon M. Lucid, M. Rhea Seddon, and Richard A. Searfoss; John E. Blaha, standing left, William S. McArthur, and Martin J. Fettman The STS-58 crew patch The Spacelab Life Sciences 2 mission patch
Left: STS-58 astronauts David A. Wolf, seated left, Shannon M. Lucid, M. Rhea Seddon, and Richard A. Searfoss; John E. Blaha, standing left, William S. McArthur, and Martin J. Fettman. Middle: The STS-58 crew patch. Right: The Spacelab Life Sciences 2 mission patch.

As its name implies, SLS-2 was the second space shuttle mission dedicated to conducting life sciences research. Because of an oversubscription in the original Spacelab-4 mission, managers decided to split the research flight into two missions to optimize the science return for the principal investigators. The nine-day SLS-1 mission flew in June 1991, its seven-member crew conducting nine life science experiments. Because of her experience as a mission specialist on SLS-1, managers named Seddon as the payload commander for SLS-2. Eight of the 14 experiments used the astronauts as test subjects, and six used 48 laboratory rats housed in 24 cages in the Rodent Animal Holding Facility.

Liftoff of space shuttle Columbia on the STS-58 Spacelab Life Sciences 2 mission View of the Spacelab module in Columbia’s payload bay
Left: Liftoff of space shuttle Columbia on the STS-58 Spacelab Life Sciences 2 mission. Right: View of the Spacelab module in Columbia’s payload bay.

Space shuttle Columbia’s 15th liftoff took place at 10:53 a.m. EST on Oct. 18, 1993, from Launch Pad 39B at NASA’s Kennedy Space Center (KSC) in Florida, carrying the SLS-2 mission into space. Blaha, making his fourth trip into space and second as commander, and Pilot Searfoss on his first launch, monitored Columbia’s systems as they climbed into orbit, assisted by McArthur, also on his first flight, serving as the flight engineer. Seddon, making her third trip into space, accompanied them on the flight deck. Wolf, Lucid, and Fettman experienced launch in the shuttle’s middeck. Upon reaching orbit, the crew opened the payload bay doors, thus deploying the shuttle’s radiators. Shortly after, the crew opened the hatch from the shuttle’s middeck, translated down the transfer tunnel, and entered Spacelab for the first time, activating the module, and getting to work on the experiments, including the first blood draws for the regulatory physiology experiments. The blood samples, stored in the onboard refrigerator for postflight analysis, investigated calcium loss in bone and parameters of fluid and electrolyte regulation.

Dr. David A. Wolf draws a blood sample from Dr. Martin J. Fettman as part of a regulatory physiology experiment Payload Commander Dr. M. Rhea Seddon processes blood samples William S. McArthur uses a metabolic gas analyzer to monitor his pulmonary or lung function
Left: Dr. David A. Wolf draws a blood sample from Dr. Martin J. Fettman as part of a regulatory physiology experiment. Middle: Payload Commander Dr. M. Rhea Seddon processes blood samples.  Right: William S. McArthur uses a metabolic gas analyzer to monitor his pulmonary or lung function.

During the 14-day mission, the seven-member SLS-2 crew served as both experiment subjects and operators. The majority of the science activities took place in the Spacelab module mounted in the shuttle’s payload bay, with SLS-2 marking the ninth flight of the ESA-built pressurized module since its first flight on STS-9 in 1983. The experiments had, of course, begun long before launch with extensive baseline data collection. For Lucid and Fettman, data collection for one of the cardiovascular experiments began four hours before launch and continued through ascent and for the first day or so of the mission. Both volunteered to have catheters threaded through an arm vein and into their hearts to directly measure the effect on central venous pressure from the fluid shift caused by the transition to weightlessness.

Views of the rotating dome experiment Views of the rotating dome experiment
Two views of the rotating dome experiment, used to measure astronauts’ motion perception, with John E. Blaha, left, and Dr. M. Rhea Seddon, as test subjects.

View of the rotating chair View of the rotating chair
Two views of the rotating chair, with Dr. Martin J. Fettman as the subject and Dr. M. Rhea Seddon as the operator, used to test the astronauts’ vestibular systems.

A group of experiments studied the astronauts’ sensory motor adaptation to spaceflight. In one study, the astronauts placed their heads inside a rotating dome with colored dots painted on its inside surface. Using a joystick, the astronauts indicated in which direction they perceived the rotation of the dots. A rotating chair measured how reflexive eye movements change in weightlessness. Using a bungee harness to simulate falling, astronauts reported on their sensation of and their reflexes to “falling” in microgravity.

Earth observation photographs taken by the STS-58 crew. Memphis, Tennessee Earth observation photographs taken by the STS-58 crew. The Richat Structure in Mauritania Earth observation photographs taken by the STS-58 crew. Cyprus, Türkiye, and the eastern Mediterranean Sea. Earth observation photographs taken by the STS-58 crew. Tokyo Bay
A selection of the Earth observation photographs taken by the STS-58 crew. Left: The Memphis, Tennessee, area. Middle left: The Richat Structure in Mauritania. Middle right: Cyprus, Türkiye, and the eastern Mediterranean Sea. Right: Tokyo Bay.

In addition to the complex set of SLS-2 experiments, the STS-58 astronauts’ activities also included other science and operational items. They conducted several experiments as part of the Extended Duration Orbiter Medical Program, including the use of lower body negative pressure as a potential countermeasure to cardiovascular changes, in particular orthostatic intolerance, as shuttle missions flew ever longer missions. The astronauts talked to ordinary people on the ground using the Shuttle Amateur Radio Experiment, or ham radio. As on all missions, they enjoyed looking at the Earth. When not participating as a test subject for the various experiments or needing to monitor Columbia’s systems, Searfoss in particular took advantage of their unique vantage point, taking more than 4,000 photographs of the Earth below. Blaha and Searfoss tested the Portable In-flight Landing Operations Trainer (PILOT), a laptop computer to help them maintain proficiency in landing the shuttle.

STS-58 astronauts William A. McArthur, top, Martin J. Fettman, David A. Wolf, Richard A. Searfoss, John E. Blaha, M. Rhea Seddon, and Shannon M. Lucid inside the Spacelab module McArthur operates the Shuttle Amateur Radio Experiment, or ham radio Pilot Searfoss uses the Portable In-flight Landing Operations Simulator, a laptop computer to practice landing the space shuttle
Left: STS-58 astronauts William A. McArthur, top, Martin J. Fettman, David A. Wolf, Richard A. Searfoss, John E. Blaha, M. Rhea Seddon, and Shannon M. Lucid inside the Spacelab module. Middle: McArthur operates the Shuttle Amateur Radio Experiment, or ham radio. Right: Pilot Searfoss uses the Portable In-flight Landing Operations Simulator, a laptop computer to practice landing the space shuttle.

On their last day in space, the astronauts finished the experiments, Wolf deactivated the Spacelab module, and they strapped themselves into their seats to prepare for the return to Earth. They fired the shuttle’s Orbital Maneuvering System engines to begin the descent from orbit. Blaha piloted Columbia to a smooth landing on Runway 22 at Edwards Air Force Base in California’s Mojave Desert on Nov. 1, after completing 225 orbits around the Earth in 14 days and 12 minutes. The astronauts exited Columbia about one hour after landing and transferred to the Crew Transport Vehicle, a converted people-mover NASA purchased from Dulles International Airport near Washington, D.C. This allowed them to remain in a supine position to minimize the effects of gravity on the early postflight measurements. While Blaha, Searfoss, and McArthur returned to Houston a few hours after landing, Seddon, Wolf, Lucid, and Fettman continued extensive data collection at the Dryden, now Armstrong, Fight Research Center at Edwards for several days before returning to Houston. Ground crews towed Columbia from the runway to the Mate-Demate Facility to begin preparing it for its ferry flight back to KSC atop the Shuttle Carrier Aircraft and its next mission, STS-62, the United States Microgravity Payload-2 mission.

Space Shuttle Columbia lands at NASA’s Kennedy Space Center in Florida to end the 14-day STS-58 Spacelab Life Sciences 2 (SLS-2) mission The seven STS-58 SLS-2 crew members have exited Columbia and transferred to the Crew Transport Vehicle to begin postflight data collection
Left: Space Shuttle Columbia lands at NASA’s Kennedy Space Center in Florida to end the 14-day STS-58 Spacelab Life Sciences 2 (SLS-2) mission. Right: The seven STS-58 SLS-2 crew members have exited Columbia and transferred to the Crew Transport Vehicle to begin postflight data collection.

Summarizing the scientific return from the flight, Mission Scientist Howard J. Schneider said, “All of our accomplishments exceeded our expectations.” Program Scientist Frank M. Sulzman added, “This has been the best shuttle mission for life sciences to date.” Principal investigators published the results of the experiments from SLS-1 and SLS-2 in a special edition of the Journal of Applied Physiology in July 1996. Enjoy the crew-narrated video about the STS-58 SLS-2 mission.

Powered by WPeMatico

Get The Details…
Kelli Mars

Public Invited to International Observe the Moon Night Oct. 21

Public Invited to International Observe the Moon Night Oct. 21

2 min read

Public Invited to International Observe the Moon Night Oct. 21

A graphic that shows a moon on a blue to purple background with the words International Observe the Moon Night October, 21, 2023 with silhouettes of people looking at the moon.
NASA

NASA’s Planetary Mission’s Program Office is hosting an International Observe the Moon Night event Saturday, Oct. 21, from 5:30 – 8 p.m. at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville, Alabama. The event is free and open to the public.

This family-friendly event will feature Moon and solar system exhibits along with a variety of hands-on activities for children and adults. The Von Braun Astronomical Society will be outside with telescopes, providing guided tours of the Moon, planets, and other celestial objects for visitors after sunset. Mister Bond & the Science Guys of Nashville will lead space science experiments and Janet Ivey, host of the PBS series “Janet’s Planet,” will give a talk on lunar landers. Other highlights include a LED mirror robot show, face painting, a photo booth, and DJ dance party.

Guests should enter the Davidson Center through the doors facing the parking lot beginning at 5:30 p.m.

International Observe the Moon Night is a worldwide public event that encourages understanding of the Moon and NASA’s mission of exploration and scientific discovery. The U.S. Space & Rocket Center is the official visitor center of NASA’s Marshall Space Flight Center. Marshall manages the Planetary Missions Program Office for the agency’s Science Mission Directorate in Washington.

To participate in International Observe the Moon Night from wherever you may be, check out our official NASA TV broadcast at 7- 8 p.m. EDT here:

https://moon.nasa.gov/observe-the-moon-night/participate/live-streams/

Jonathan Deal

NASA’s Marshall Space Flight Center
jonathan.e.deal@nasa.gov
256-544-0034

Powered by WPeMatico

Get The Details…
Beth Ridgeway

The Moon Casts a Shadow

The Moon Casts a Shadow

A full disc image of Earth in which North and South America are visible. The Moon casts a dark brown shadow in the top left quadrant.
On October 14, 2023, the Moon aligned with the Sun and Earth to produce an annular solar eclipse. The spectacle bathed millions of Americans in a lunar shadow as the Moon blocked the Sun’s rays. The above image was acquired during the eclipse by NASA’s Earth Polychromatic Imaging Camera imager aboard the Deep Space Climate Observatory, a joint NASA, NOAA, and U.S. Air Force satellite.
NASA

NASA’s Earth Polychromatic Imaging Camera aboard the Deep Space Climate Observatory (DSCOVR) captured the lunar shadow during the Oct. 14 annular solar eclipse. The sensor provides frequent global views of Earth from its position at Lagrange Point 1, a gravitationally stable point between the Sun and Earth about 1.5 million kilometers from Earth.

DSCOVR is a space weather station that monitors changes in the solar wind, providing space weather alerts and forecasts for geomagnetic storms that could disrupt power grids, satellites, telecommunications, aviation and GPS.

Image Credit: NASA

Powered by WPeMatico

Get The Details…
Monika Luabeya

NASA’s Innovative Rocket Nozzle Paves Way for Deep Space Missions

NASA’s Innovative Rocket Nozzle Paves Way for Deep Space Missions

4 Min Read

NASA’s Innovative Rocket Nozzle Paves Way for Deep Space Missions

A hot fire test of a 3D printed nozzle is shown with an orange fire being expelled at Marshall Space Flight Center in Huntsville, Alabama.

The RAMFIRE nozzle performs a hot fire test at Marshall’s East test area stand 115. The nozzle, made of the novel aluminum alloy 6061-RAM2, experiences huge temperature gradients. As hot gasses approach 6000 degrees Fahrenheit and undergo combustion, icicles are forming on the outside of the engine nozzle.

Credits:
NASA

By Ray Osorio

NASA recently built and tested an additively-manufactured – or 3D printed – rocket engine nozzle made of aluminum, making it lighter than conventional nozzles and setting the course for deep space flights that can carry more payloads.

Under the agency’s Announcement of Collaborative Opportunity, engineers from NASA’s Marshall Space Flight Center in Huntsville, Alabama, partnered with Elementum 3D, in Erie, Colorado, to create a weldable type of aluminum that is heat resistant enough for use on rocket engines. Compared to other metals, aluminum is lower density and allows for high-strength, lightweight components.

However, due to its low tolerance to extreme heat and its tendency to crack during welding, aluminum is not typically used for additive manufacturing of rocket engine parts – until now. 

Meet NASA’s latest development under the Reactive Additive Manufacturing for the Fourth Industrial Revolution, or RAMFIRE, project. Funded under NASA’s Space Technology Mission Directorate (STMD), RAMFIRE focuses on advancing lightweight, additively manufactured aluminum rocket nozzles. The nozzles are designed with small internal channels that keep the nozzle cool enough to prevent melting.

A nozzle is being created by a 3D printer layer by layer. The photo has a golden hue from the light and laser.
At the RPM Innovation (RPMI) facility in Rapid City, South Dakota, manufacturing for a large-scale aerospike demonstration nozzle with integral channels is underway. The laser powder directed energy deposition (LP-DED) process creates a melt pool using a laser and blows powder into the melt pool to deposit material layer by layer. NASA engineers will use the nozzle as a proof of concept to inform future component designs.
RPM Innovation

With conventional manufacturing methods, a nozzle may require as many as thousand individually joined parts. The RAMFIRE nozzle is built as a single piece, requiring far fewer bonds and significantly reduced manufacturing time. 

NASA and Elementum 3D first developed the novel aluminum variant known as A6061-RAM2 to build the nozzle and modify the powder used with laser powder directed energy deposition (LP-DED) technology. Another commercial partner, RPM Innovations (RPMI) in Rapid City, South Dakota, used the newly invented aluminum and specialized powder to build the RAMFIRE nozzles using their LP-DED process.

“Industry partnerships with specialty manufacturing vendors aid in advancing the supply base and help make additive manufacturing more accessible for NASA missions and the broader commercial and aerospace industry,” Paul Gradl, RAMFIRE principal investigator at NASA Marshall, said.

We’ve reduced the steps involved in the manufacturing process, allowing us to make large-scale engine components as a single build in a matter of days.

Paul Gradl

Paul Gradl

RAMFIRE Principal Investigator

NASA’s Moon to Mars objectives require the capability to send more cargo to deep space destinations. The novel alloy could play an instrumental role in this by enabling the manufacturing of lightweight rocket components capable of withstanding high structural loads.

Seen here at the Marshall Space Flight Center in Huntsville, Alabama, and developed with the same 6061-RAM2 aluminum material used under the RAMFIRE project, is a vacuum jacket manufacturing demonstrator tank. The component, made for cryogenic fluid application, is designed with a series of integral cooling channels that have a wall thickness of about 0.06 inches.
NASA

“Mass is critical for NASA’s future deep space missions,” said John Vickers, principal technologist for STMD advanced manufacturing. “Projects like this mature additive manufacturing along with advanced materials, and will help evolve new propulsion systems, in-space manufacturing, and infrastructure needed for NASA’s ambitious missions to the Moon, Mars, and beyond.”

Earlier this summer at Marshall’s East Test Area, two RAMFIRE nozzles completed multiple hot-fire tests using liquid oxygen and liquid hydrogen, as well as liquid oxygen and liquid methane fuel configurations. With pressure chambers in excess of 825 pounds per square inch (psi) – more than anticipated testing pressures – the nozzles successfully accumulated 22 starts and 579 seconds, or nearly 10 minutes, of run time. This event demonstrates the nozzles can operate in the most demanding deep-space environments.

A female engineer with brown curly hair and a male engineer with short brown hair look at a nozzle on a table that has been through hot fire testing.
NASA Engineers, Tessa Fedotowsky and Ben Williams, from Marshall Space Flight Center in Huntsville, Alabama, inspect the RAMFIRE nozzle following successful hot-fire testing.
NASA

“This test series marks a significant milestone for the nozzle,” Gradl said. “After putting the nozzle through the paces of a demanding hot-fire test series, we’ve demonstrated the nozzle can survive the thermal, structural, and pressure loads for a lunar lander scale engine.”

In addition to successfully building and testing the rocket engine nozzles, the RAMFIRE project has used the RAMFIRE aluminum material and additive manufacturing process to construct other advanced large components for demonstration purposes. These include a 36-inch diameter aerospike nozzle with complex integral coolant channels and a vacuum-jacketed tank for cryogenic fluid applications.

NASA and industry partners are working to share the data and process with commercial stakeholders and academia. Various aerospace companies are evaluating the novel alloy and the LP-DED additive manufacturing process and looking for ways it can be used to make components for satellites and other applications.

Ramon J. Osorio

Marshall Space Flight Center, Huntsville, Alabama

256-544-0034

ramon.j.osorio@nasa.gov

About the Author

Beth Ridgeway

Beth Ridgeway

Share

Details

Last Updated

Oct 19, 2023

Powered by WPeMatico

Get The Details…
Beth Ridgeway

Watch Live as NASA Astronauts Conduct Spacewalk, Upgrade Space Station

Watch Live as NASA Astronauts Conduct Spacewalk, Upgrade Space Station

NASA astronaut Jasmin Moghbeli (center) assists astronauts Andreas Mogensen (left) from ESA (European Space Agency) and Loral O'Hara (right) from NASA as they try on their spacesuits and test the suits' components aboard the International Space Station's Quest airlock in preparation for an upcoming spacewalk.
NASA astronaut Jasmin Moghbeli (center) assists astronauts Andreas Mogensen (left) from ESA (European Space Agency) and Loral O’Hara (right) from NASA as they try on their spacesuits and test the suits’ components aboard the International Space Station’s Quest airlock in preparation for an upcoming spacewalk.
NASA

Two NASA astronauts aboard the International Space Station will conduct a spacewalk Monday, Oct. 30, to complete maintenance activities at the orbital complex.

Live coverage of the spacewalk begins at 6:30 a.m. EDT on NASA Television, the NASA app, and the agency’s website. The spacewalk is scheduled to begin about 8:05 a.m., and last about six-and-a-half hours.

NASA astronauts Jasmin Moghbeli and Loral O’Hara will exit the station’s Quest airlock to remove an electronics box called the Radio Frequency Group from a communications antenna on station. They also will replace one of 12 trundle bearing assemblies on a solar alpha rotary joint. The bearings enable the station’s solar arrays to rotate properly to track the Sun as the station orbits the Earth. When looking at the space station, the antenna is on the starboard (right side) truss, and the rotary joint is on the port, or left side.

U.S. spacewalk 89 will be the first for both Moghbeli and O’Hara. Moghbeli will serve as extravehicular activity crew member 1 and will wear a suit with red stripes. O’Hara will serve as extravehicular crew member 2 and will wear an unmarked suit.

Station managers continue planning for another spacewalk with O’Hara, as well as ESA (European Space Agency) astronaut Andreas Mogensen, to collect samples for analysis to see whether microorganisms may exist on the exterior of the orbital complex. That spacewalk, which now is U.S. spacewalk 90, has been postponed to no earlier than December.

Get breaking news, images and features from the space station on the station blog, Instagram, Facebook, and X.

Learn more about International Space Station research and operations at:

https://www.nasa.gov/station

-end-

News Media Contacts

Josh Finch / Julian Coltre
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / julian.n.coltre@nasa.gov

Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Share

Details

Last Updated

Oct 19, 2023

Editor

Claire A. O’Shea

Powered by WPeMatico

Get The Details…
Claire A. O’Shea