Meet Tracy Hudspeth: Communications Specialist at NASA Office of Small Business Programs

Meet Tracy Hudspeth: Communications Specialist at NASA Office of Small Business Programs

A photo of Tracy Hudspeth at the Washington Harbor

As another inspiring Hispanic Heritage Month concludes, we wanted to take the moment to highlight one of our own, Tracy Hudspeth. Tracy Hudspeth is the Communication Specialist at NASA Office of Small Business Programs. She plays a pivotal role in shaping the organization’s public image and ensuring effective communication internally and externally.

National Hispanic Heritage Month celebrates the contributions of Hispanic and Latino Americans to the United States. How do you feel about being part of this celebration, especially in the context of your work with NASA?

I’m honored to be recognized in this celebration as an Afro-Latina working for NASA. In this position, I have the pleasure of planning our monthly Learning Series and quarterly Outreach Events. I take pride in the fact that we create events that provide resources and help to promote the growth and development of Hispanic-owned businesses in the United States. This is personal to me because several members of my family, including my mom, utilized available programs and resources to start their businesses.

Can you share an exciting project you recently worked on?

All of my projects have been exciting but if I had to choose, I would say the NASA Small Business Opportunities and Resources Networking Conference which took place on Wednesday, October 11th!

Who inspires you?

All the women in my family.  I come from a long line of strong women. Their traits include being self-confident, productive, optimistic, caring, fearless women who stand up for what they believe in and unbothered by what others say or think.  They have always inspired me to be true to myself and a go-getter! 

Do you have a favorite memory where you most strongly felt a sense of community?

I recently attended a block party in my old neighborhood. This event is special to me because my son who was 5 at the time came up with the idea of having an “outside party” after having a conversation with an original homeowner who had been living there since the 1960’s.  With the assistance of our neighbors, my son’s dream of bringing the block party back to life came true and they have continued the tradition ever since. It was wonderful to attend this year to see the community come together to celebrate and fellowship.

Editor: Maliya Malik, NASA Office Of Small Business Programs Intern

Share

Details

Last Updated

Oct 19, 2023

Powered by WPeMatico

Get The Details…
Garrett Shea

Metrics

Metrics

2 Min Read

Metrics

NSSC Metrics Graphs

Services Catalog

The catalogs provide service description, chargeback rate, unit of measure, and service level indicators for each NSSC service.

Service Level Agreement (SLA)

The SLA provides information about roles, responsibilities, rates, and service level indicators for all NASA Centers. The SLA is negotiated on an annual basis in line with the fiscal year. A single SLA is shared by all NASA Centers and signed by the Associate Administrator, Chief Financial Officer, Chief Information Officer, and the Office of Inspector General. The SLA provides for the delivery of specific services from the NSSC to NASA Centers and Headquarters Operations in the areas of:

  • Financial Management
  • Procurement
  • Human Resources
  • Information Technology
  • Agency Business Services

Customer Satisfaction Surveys

The NSSC is fundamentally changing the way NASA does business. In order to maintain customer loyalty and satisfaction, we must not only deliver a higher level of service, but also be customer focused. 
Executive Summary of Broad-Based Survey Results for 2016
Executive Summary of Broad-Based Survey Results for 2013

NSSC Bill (Formerly know as Performance and Utilization Report (PUR))

*** On-Line Course Management and Training Purchases have been realigned to the OLC &Training Purchases section of the bill in accordance with the realignment of training funds. Center Special Projects have been consolidated into one Special Projects bill with the funding Center identified for each project.***

FY 2023 – Utilization Reports

M

September 2023
August 2023
July 2023
June 2023
May 2023
April 2023
March 2023
February 2023
January 2023
December 2023
November 2023
October 2022

FY 2022 – Utilization Reports
September 2022
August 2022
July 2022
June 2022
May 2022
April 2022
March 2022
February 2022
January 2022
December 2021
November 2021
October 2021
 

FY 2021 – Utilization Reports

September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020

Powered by WPeMatico

Get The Details…
NASA

NASA’s Webb Discovers New Feature in Jupiter’s Atmosphere

NASA’s Webb Discovers New Feature in Jupiter’s Atmosphere

Narrow jet stream near equator has winds traveling 320 miles per hour

NASA’s James Webb Space Telescope has discovered a new, never-before-seen feature in Jupiter’s atmosphere. The high-speed jet stream, which spans more than 3,000 miles (4,800 kilometers) wide, sits over Jupiter’s equator above the main cloud decks. The discovery of this jet is giving insights into how the layers of Jupiter’s famously turbulent atmosphere interact with each other, and how Webb is uniquely capable of tracking those features.

Image: Webb’s View of Jupiter

Jupiter dominates the black background of space. The image is a composite, and shows Jupiter in enhanced color, featuring the planet’s famous Great Red Spot, which appears white with light pink around the edges. The planet is striated with swirling horizontal stripes of green, periwinkle, light pink, and cream. Horizontally across the equator is a wide cream-colored band, whose height extends about 1/7 of the planet. This is the planet’s equatorial zone. The stripes across the planet interact and mix at their edges. Along both of the northern and southern poles, the planet glows in green. Bright red auroras glow just above the planet’s surface at both poles.
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white ‘spots’ and ‘streaks’ are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover.
Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI)

“This is something that totally surprised us,” said Ricardo Hueso of the University of the Basque Country in Bilbao, Spain, lead author on the paper describing the findings. “What we have always seen as blurred hazes in Jupiter’s atmosphere now appear as crisp features that we can track along with the planet’s fast rotation.”

The research team analyzed data from Webb’s NIRCam (Near-Infrared Camera) captured in July 2022. The Early Release Science program – jointly led by Imke de Pater from the University of California, Berkeley and Thierry Fouchet from the Observatory of Paris – was designed to take images of Jupiter 10 hours apart, or one Jupiter day, in four different filters, each uniquely able to detect changes in small features at different altitudes of Jupiter’s atmosphere.

“Even though various ground-based telescopes, spacecraft like NASA’s Juno and Cassini, and NASA’s Hubble Space Telescope have observed the Jovian system’s changing weather patterns, Webb has already provided new findings on Jupiter’s rings, satellites, and its atmosphere,” de Pater noted.

While Jupiter is different from Earth in many ways – Jupiter is a gas giant, Earth is a rocky, temperate world – both planets have layered atmospheres. Infrared, visible, radio, and ultraviolet light wavelengths observed by these other missions detect the lower, deeper layers of the planet’s atmosphere – where gigantic storms and ammonia ice clouds reside.

Image: Jupiter’s Equatorial Jet Stream

The infographic shows Webb’s image of Jupiter at the left. The planet is striated with swirling horizontal stripes of neon turquoise, periwinkle, and cream. Below the planet, the NIRCam filters and their respective colors assigned are listed – F164N in blue, F212N in green, and F360M in red. On the right side of the infographic, there are 8 separate images. Two of those images are horizontal and span the entire right half of the infographic. The top horizontal image is labeled F212N 10:52 UT and the bottom is labeled F212N 20:55 UT. They are zoomed-in pullouts from a section of Jupiter’s equator—outlined in a white box on the image of the planet on the left. Both of these images are white and grey with horizontal wispy clouds. There are 6 smaller boxes in between the two horizontal images—3 rows of 2. The first column of the boxes is outlined in orange, the second column purple and the third yellow. Each of the smaller images correspond to orange, purple, and yellow boxes placed along the horizontal images.
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white ‘spots’ and ‘streaks’ are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.
Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI)

On the other hand, Webb’s look farther into the near-infrared than before is sensitive to the higher-altitude layers of the atmosphere, around 15-30 miles (25-50 kilometers) above Jupiter’s cloud tops. In near-infrared imaging, high-altitude hazes typically appear blurry, with enhanced brightness over the equatorial region. With Webb, finer details are resolved within the bright hazy band.

The newly discovered jet stream travels at about 320 miles per hour (515 kilometers per hour), twice the sustained winds of a Category 5 hurricane here on Earth. It is located around 25 miles (40 kilometers) above the clouds, in Jupiter’s lower stratosphere.

By comparing the winds observed by Webb at high altitudes, to the winds observed at deeper layers from Hubble, the team could measure how fast the winds change with altitude and generate wind shears.

Image: Jupiter’s Winds

A portion of the graphic that displays wind speeds on Jupiter at different altitudes. The portion of this graphic shows the ends of three arrows that travel across the graphic from the left to the right. The top most arrow (colored in sky blue) extends the farthest right to about 3/4 the way across the graphic, the middle arrow (colored in periwinkle) extends to a little less than halfway across the graphic, and the bottom arrow (colored in light grey) extends to about 1/4 the way across the graphic. Extending out below each arrow is a cone of the same color to indicate the +/- error margin. There is Webb's image of Jupiter in the background of the graphic.
Researchers using NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) have discovered a high-speed jet stream sitting over Jupiter’s equator, above the main cloud decks. At a wavelength of 2.12 microns, which observes between altitudes of about 12-21 miles (20-35 kilometers) above Jupiter’s cloud tops, researchers spotted several wind shears, or areas where wind speeds change with height or with distance, which enabled them to track the jet. This image highlights several of the features around Jupiter’s equatorial zone that, between one rotation of the planet (10 hours), are very clearly disturbed by the motion of the jet stream.
: NASA, ESA, CSA, STScI, Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), A. James (STScI)

While Webb’s exquisite resolution and wavelength coverage allowed for the detection of small cloud features used to track the jet, the complementary observations from Hubble taken one day after the Webb observations were also crucial to determine the base state of Jupiter’s equatorial atmosphere and observe the development of convective storms in Jupiter’s equator not connected to the jet.  

“We knew the different wavelengths of Webb and Hubble would reveal the three-dimensional structure of storm clouds, but we were also able to use the timing of the data to see how rapidly storms develop,” added team member Michael Wong of the University of California, Berkeley, who led the associated Hubble observations.

The researchers are looking forward to additional observations of Jupiter with Webb to determine if the jet’s speed and altitude change over time.

Image: Zoom in on Webb’s View of Jupiter

Jupiter dominates the black background of space. The image is a composite, and shows Jupiter in enhanced color, featuring the planet’s famous Great Red Spot, which appears white with light pink around the edges. The planet is striated with swirling horizontal stripes of green, periwinkle, light pink, and cream. Horizontally across the equator is a wide cream-colored band, whose height extends about 1/7 of the planet. This is the planet’s equatorial zone. The stripes across the planet interact and mix at their edges. Along both of the northern and southern poles, the planet glows in green. Bright red auroras glow just above the planet’s surface at both poles.
A zoomed in view of Webb’s Jupiter image.
Image: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI)

“Jupiter has a complicated but repeatable pattern of winds and temperatures in its equatorial stratosphere, high above the winds in the clouds and hazes measured at these wavelengths,” explained team member Leigh Fletcher of the University of Leicester in the United Kingdom. “If the strength of this new jet is connected to this oscillating stratospheric pattern, we might expect the jet to vary considerably over the next 2 to 4 years – it’ll be really exciting to test this theory in the years to come.”

“It’s amazing to me that, after years of tracking Jupiter’s clouds and winds from numerous observatories, we still have more to learn about Jupiter, and features like this jet can remain hidden from view until these new NIRCam images were taken in 2022,” continued Fletcher.

The researchers’ results were recently published in Nature Astronomy.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

Media Contacts

Laura Betzlaura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Hannah Braun hbraun@stsci.edu , Christine Pulliamcpulliam@stsci.edi
Space Telescope Science Institute, Baltimore, Md.

Downloads

Download full resolution images for this article from the Space Telescope Science Institute.

Related Information

NASA’s Jupiter Website – https://science.nasa.gov/jupiter/

NASA’s Solar System Website – https://science.nasa.gov/solar-system/

More Webb News – https://science.nasa.gov/mission/webb/latestnews/

More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/

Webb Mission Page – https://science.nasa.gov/mission/webb/

Share

Details

Last Updated

Oct 19, 2023

Editor

Steve Sabia

Contact

Location

Goddard Space Flight Center

Powered by WPeMatico

Get The Details…
steve sabia

First Artemis Crew Trains for Mission Around Moon

First Artemis Crew Trains for Mission Around Moon

Four astronauts are busy training for Artemis II, the first mission to carry humans on NASA’s powerful SLS (Space Launch System) rocket and Orion spacecraft, testing systems to support life in deep space on future Moon missions and expanding the space frontier beyond Earth orbit.

In August, the crew – NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen – finished the first part of their training known as fundamentals, establishing a foundational knowledge of all SLS and Orion systems.

The quartet began the process of learning every inch of their Orion crew module’s interior, which will serve as their home for the approximately 10-day flight test. They reviewed the building blocks for navigating the spacecraft’s displays and executing the procedures they will use to fly and monitor Orion. While some training activities included all four crew members together, other activities involved one-on-one sessions with trainers.

“The crew is making incredible progress getting ready for their flight as the first people to fly inside NASA’s newest spacecraft built for deep space,” said Jacki Mahaffey, chief training officer for Artemis II, based at NASA’s Johnson Space Center in Houston. “Their training is preparing them to do everything from planned mission tasks and daily operations, to how to recognize and deal with unexpected situations.”

Astronaut Reid Wiseman is in a red shirt in the foreground with his right hand touching Orion's controls while Jeremy Hansen sits in the background.
Artemis II crew members Reid Wiseman (foreground) and Jeremy Hansen participate in training in the Orion simulator at NASA’s Johnson Space Center in Houston.
(Credit: NASA/James Blair)

In September, Koch and Hansen, alongside several other astronauts, took part in geology training in the remote Mistastin Crater in Canada, an area in Newfoundland scientists have identified as one of the sites on Earth that’s most analogous to the Moon. While there, Koch and Hansen worked on identifying instruments and techniques for exploring the lunar surface, demonstrated sampling techniques, and practiced identifying and photographing geological features. While Hansen and Koch will not walk on the Moon during Artemis II, the training helped prepare them for key lunar observations during their mission and will pave the way for future Artemis crews as they train for surface science and discovery.

Two astronauts, one in a black jacket and black hat, and the other in a lime jacket with its hood up, kneel to examine the rocky landscape.
CSA astronaut Jeremy Hansen and NASA astronaut Christina Koch sample rocks using rock hammers during a field geology training expedition in northern Labrador in Canada. (Credit: CSA)

The full crew also took part in the first dry run for launch day operations at NASA’s Kennedy Space Center in Florida. The test gave the Exploration Ground Systems Program team an opportunity to share and demonstrate the steps involved in preparing the crew to get to their rocket and spacecraft on launch day, including donning their spacesuits, traveling to the launch pad, taking the elevator up the mobile launcher, and walking the crew access arm to the white room, where technicians will help them take their spacecraft seats and check out their systems atop the giant rocket.

“Our training has been very smooth so far and we have enjoyed meeting the men and women around the globe working to bring Artemis missions to reality,” said NASA astronaut Reid Wiseman, the mission commander. “From the crew side, Victor, Christina, Jeremy, and I have developed a strong interpersonal chemistry that will be crucial as we work together to learn more about the Artemis II mission.”

Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.
(Credit: NASA)

This month, the crew is beginning orbit operations training, including practicing operations in the Orion mission simulator at Johnson. They also are learning details about how to use cameras inside Orion to take photos of their activities inside the spacecraft, and document views of Earth and the Moon through the spacecraft’s four primary windows. Medical training will prepare the crew to handle potential medical situations that could arise during their mission. In the coming months, they also will delve deeper into training for the last leg of the mission, their return to Earth and recovery by a combined NASA and U.S. Navy team, They’ll prepare for both normal and emergency exits from their spacecraft in the ocean.

With Artemis missions, NASA is collaborating with commercial and international partners to explore the Moon for scientific discovery and technology advancement and establish the first long-term presence on the Moon. The Moon missions will serve as training for how to live and work on another world as NASA prepares for human exploration of Mars.

Powered by WPeMatico

Get The Details…
Rachel H. Kraft

The Marshall Star for October 18, 2023

The Marshall Star for October 18, 2023

24 Min Read

The Marshall Star for October 18, 2023

Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA

Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA

Credits:
NASA

Marshall Managers Win Top Federal Award for DART Asteroid Deflection Mission

By Rick Smith

Brian Key and Scott Bellamy of NASA’s Marshall Space Flight Center accepted the Samuel J. Heyman Service to America Medals, presented by Partnership for Public Service Oct. 17 during a ceremony at the John F. Kennedy Center for Performing Arts in Washington.

The awards program for career federal employees, known as the Sammies, aims to highlight key accomplishments that benefit the nation, seeks to build trust in government, and inspire people to consider careers in public service.

Scott Bellamy, left, and Brian Key, right, stop for a photo moments after receiving the Samuel J. Heyman Service to America Medals. Bellamy and Key accepted on behalf of the entire DART team during a ceremony at the John F. Kennedy Center for Performing Arts in Washington on Oct. 17.
Scott Bellamy, left, and Brian Key, right, pictured moments after receiving the Samuel J. Heyman Service to America Medals, known as the Sammies. Bellamy and Key accepted the prestigious awards on behalf of the entire DART (Double Asteroid Redirection Test) team during a ceremony on Oct. 17 at the John F. Kennedy Center for Performing Arts in Washington
Partnership for Public Service/Allison Shelley

Key and Bellamy led NASA’s DART (Double Asteroid Redirection Test) team, which successfully altered the orbit of an asteroid in September 2022, providing the first-ever planetary defense test capable of protecting Earth from celestial threats.

As part of the PMPO (Planetary Missions Program Office) at Marshall, Key and Bellamy served as program manager and mission manager, respectively, for DART. For their work on the mission, the duo was honored in the Science, Technology, and Environment category of the Sammie awards.

“DART was a first-of-its-kind mission that marked a watershed moment for planetary defense. The DART team members are some of the very best of NASA, and we are so excited to see Brian Key and Scott Bellamy recognized for their contributions and leadership,” NASA Administrator Bill Nelson said. “Brian, Scott, and the entire DART team have shaped the course of human space exploration, inspiring people around the world through innovation. Thanks to their dedication and hard work, NASA is better prepared to defend our home planet, and will be ready for whatever the universe throws at us.”

In his role on DART, Key maintained budget, staff, and schedule oversight for the mission and worked directly with DART spacecraft developers at Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

“I’m elated to see our team honored with this award, and hope it will bring more attention to the valuable work NASA does to protect our home world,” said Key, who as program manager oversees NASA’s science exploration portfolio spanning the Discovery Program, the New Horizons Program, and the Solar System Exploration Program, which covers the full range of large and small science missions exploring the solar system, planets, and other targets of interest.

Bellamy was tasked with keeping the team on track to launch and execute the mission – echoed Key’s praise for the entire DART team.

“We’re just the managers,” he said. “Our role has been to serve the team, keeping things moving forward as smoothly as possible to enable them to do the actual hands-on, pencil-to-hardware that brought this mission from concept to reality.”

That mission could not have gone more flawlessly, they agreed. Launched in November 2021, the DART spacecraft traveled to more than 6.8 million miles from Earth with one simple goal: to intentionally impact into Dimorphos, a 492-foot-diameter asteroid, at roughly 14,000 miles per hour, thus altering its orbit around its much larger parent asteroid, Didymos. DART’s collision with Dimorphos altered the asteroid’s roughly 12-hour orbit period around its parent by about a half-hour.

DART spacecraft.
An illustration of the DART spacecraft.
NASA

“I don’t even have the words to describe the release of emotion in the control room when we got confirmation that DART had impacted,” Bellamy said. “The whole team went from nail-biting suspense to unbelievable excitement in a matter of seconds.”

Neither Key, Bellamy, nor the Planetary Missions Program Office is resting on these newly acquired laurels.

Key continues to serve as program manager on NASA’s Juno mission, which since its arrival at Jupiter in 2016 has sought new clues about the gas giant’s evolution and role in the formation of our solar system. He’s also program manager for NASA’s Psyche mission, launched Oct. 13 to begin a six-year journey to study a metal-rich asteroid of the same name in solar orbit between Mars and Jupiter.

Bellamy, meanwhile, is mission manager for NASA’s Lucy mission, which over a 12-year period will tour the asteroid belt between Mars and Jupiter and closely study seven Jovian asteroids. Launched in 2021, Lucy will be the first spacecraft ever to return to Earth from the outer solar system. Bellamy also leads development of NASA’s Europa Clipper mission, which could launch in late 2024 to fly to Jupiter’s moon and conduct an intensive survey of the potentially life-sustaining seas beneath Europa’s icy surface.

As for future planetary defense activities, NASA and its partners will build on DART’s success. A follow-up mission by ESA (European Space Agency), called Hera, is scheduled to launch in 2024 to further assess DART’s impact on Dimorphos. NASA also is developing the NEO Surveyor mission, which is designed to accelerate the rate at which the agency can discovery potentially hazardous near-Earth objects, asteroids and comets which can come close to Earth and could pose an impact risk.

“Even small asteroids could do a tremendous amount of damage to a city or metropolitan area,” Key said. “We need to be more aware of the very real threat they pose and develop the means to avoid calamity.”

Johns Hopkins Applied Physics Laboratory managed the DART mission for NASA’s Planetary Defense Coordination Office. The agency provided support for the mission from several centers, including the Jet Propulsion Laboratory, Goddard Space Flight Center, Johnson Space Center, Glenn Research Center, and Langley Research Center.

Created in 2002, the Samuel J. Heyman Service to America Medals, named for the organization’s late founder, recognize excellence and leadership in the federal government. Presented annually by the nonprofit Partnership for Public Service, the awards honor public servants whose significant achievements help the nation innovate, engage globally, and deliver vital services to the public. Learn more about the awards.

Smith, a Manufacturing Technical Solutions employee, supports Marshall’s Office of Communications.

› Back to Top

Mission Success is in Our Hands to Showcase New Look at Oct. 19 Event

By Wayne Smith

An initiative highlighting mission success and the safety culture at NASA’s Marshall Space Flight Center will showcase a new look at its Oct. 19 event.

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs Engineering. As part of the final Shared Experiences Forum of the year, the Mission Success committee will display eight new testimonial banners featuring Marshall team members as part of its rebranding. The banners will be placed across the center.

Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands Shared Experiences Forum speaker Oct. 19. The forum is available to the public virtually through Teams.
Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands Shared Experiences Forum speaker Oct. 19. The forum is available to the public virtually through Teams.

Garrett Harencak, Jacobs Engineering vice president and president of Mission Support and Test Services LLC, will be the Mission Success is in Our Hands hybrid Shared Experiences Forum speaker from 11:30 a.m. to 1 p.m. Oct. 19. Marshall team members are encouraged to attend the meeting in Building 4203, Room 1201. Light refreshments will be served. The forum is available to NASA employees and the public virtually via Teams.

Harencak will share his experiences in working and leading nuclear safety, high hazard projects, and conducting operations in the nuclear and national security industries.

“The Mission Success is in Our Hands initiative brings awareness to our workforce of the importance of their individual contributions to the overall success of the NASA and Marshall missions,” said Bill Hill, director of the Safety and Mission Assurance Directorate at Marshall. “Through our banners, the Golden Eagle award, and the Shared Experience Forum, we highlight the risk environment in which we work and in which our launch vehicles and spacecraft operate. Many Shared Experiences Forum events bring in risk practitioners from other industries to provide a comparison and illuminate lessons learned that we could gain from in our everyday activities and missions.”

Hill said Marshall has a strong safety culture. The new banners feature team members expressing that message to the workforce and they will be featured with individual profiles in upcoming editions of the Marshall Star..

“The Mission Success is in Our Hands initiative is one of the few tools that we employ at Marshall to keep Safety and Mission Success in the forefront of everyone’s mind,” Hill said. “It is important that we keep people safe at work and allow all to go home at night healthy and safe. Our Incident and Injury Free workshops, which we are soon to begin in-person sessions, offer our employees the opportunity to learn how to identify risky or unsafe behaviors and situations, and how to have those critical conversations to mitigate or eliminate those behaviors among colleagues before an incident or injury occurs.”

Eight NASA Marshall Flight Center team members will be featured in new testimonial banners that will be placed around the center as part of the Mission Success is in Our Hands initiative The banners will feature, from left, Matthew Pruitt, Human Landing System schedule lead; Brandon Reeves, Integrated Avionics Test Facilities deputy manager; Dr. Greg Drayer, Jacobs/Aerodyne Modeling & Simulation technical fellow; Dr. Chelsi Cassilly, Jacobs Planetary Protection microbiologist; Jeramie Broadway, strategy lead; Dr. Baraka Truss, Avionics & Software Branch chief; Ashley Marlar, Jacobs Operations Support team lead; and Dr. Amit Patel, Jacobs Solid Rocket Motor design engineer.
Eight NASA Marshall Flight Center team members will be featured in new testimonial banners that will be placed around the center as part of the Mission Success is in Our Hands initiative The banners will feature, from left, Matthew Pruitt, Human Landing System schedule lead; Brandon Reeves, Integrated Avionics Test Facilities deputy manager; Dr. Greg Drayer, Jacobs/Aerodyne Modeling & Simulation technical fellow; Dr. Chelsi Cassilly, Jacobs Planetary Protection microbiologist; Jeramie Broadway, strategy lead; Dr. Baraka Truss, Avionics & Software Branch chief; Ashley Marlar, Jacobs Operations Support team lead; and Dr. Amit Patel, Jacobs Solid Rocket Motor design engineer.
NASA/Charles Beason

Jeff Haars, Jacobs vice president and program manager for Jacobs Space Exploration Group, said team members working on NASA missions must not lose sight of the hazards present in the workplace or the risks of crewed spaceflight.

“The Shared Experiences Forum is probably our most impactful initiative,” Haars said. “Leaders from across NASA and industry share their personal experiences around safety and mission success. The forum provides an opportunity for learning and applying lessons and best practices from personal experiences. Ultimately, our goal is to help team members keep safety and mission assurance in their day to day decision making.”

Since 2015, the Golden Eagle Award has been presented by Mission Success is in Our Hands. The award promotes awareness and appreciation for flight safety, as demonstrated through the connections between employees’ everyday work, the success of NASA and Marshall’s missions, and the safety of NASA astronauts. The award recognizes individuals who have made significant contributions to flight safety and mission assurance above and beyond their normal work requirements. Management or peers can nominate any team member for the award. Honorees are typically recognized at quarterly Shared Experiences forums.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

Alabama Doctors Praise ‘Unique’ NASA Panel on Aerospace Psychiatry

By Jessica Barnett

Medical professionals from across the U.S. gathered for a different kind of panel discussion during the annual Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville.

The Alabama Psychiatric Physicians Association is a district branch of the American Psychiatric Association and the only association exclusively representing psychiatrists in the state of Alabama.

Ian Maddox, a systems engineer at NASA’s Marshall Space Flight Center, discussing future Artemis missions during a panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville. Joining him onstage are Erin Hayward, an engineer on the Marshall Space Environmental Effects team, and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing.
Ian Maddox, a systems engineer at NASA’s Marshall Space Flight Center, discussing future Artemis missions during a panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville. Joining him onstage are Erin Hayward, an engineer on the Marshall Space Environmental Effects team, and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing.
NASA/Christopher Blair

Psychiatrists were treated to a panel of NASA experts who shared insight from their work supporting human spaceflight research and habitation design for extended duration missions on the lunar and Martian surfaces. Panelists included Ian Maddox, a systems engineer supporting Artemis at NASA’s Marshall Space Flight Center; Erin Hayward, an engineer on the Marshall Space Environmental Effects team; and Julie Mason, a space propulsion and thermal engineer working on NASA’s Space Launch System with Boeing.

During the panel, Hayward and Mason shared their experiences serving as crew members in multiple NASA analog missions, including HERA (Human Exploration Research Analog) and Desert RATS. Both involve space habitat design, isolation, and confinement studies, as well as identifying if certain stressors could affect astronauts during off-world missions. Such stressors include changes to sleep patterns, food intake, gravity, exercise routines, and more.

Maddox explained that it’s part of NASA’s ongoing work to prepare for longer missions to the Moon and beyond. “Humanity has always explored, and NASA is really the organization responsible for making sure that continues to happen safely and peacefully,” he said.

Maddox, Hayward, and Mason share a laugh with the audience during the Q&A portion of their panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville.
Maddox, Hayward, and Mason share a laugh with the audience during the Q&A portion of their panel at the Alabama Psychiatric Physicians Association’s Fall Conference held Oct. 12 at The Westin Huntsville.
NASA/Jessica Barnett

Audience members were particularly interested in the analog missions, with several taking part in the Q&A portion of the panel. Many thanked the experts for presenting such a unique and fascinating topic, while some expressed interest in hosting similar discussions at future conferences across the nation.

Panelists answered questions about the crew selection process, explaining NASA’s careful screening procedures for identifying candidates to serve together for weeks or months in confined spaces and with very limited access to the outside world. Hayward and Mason also answered questions about their day-to-day lives inside the habitats, from smells and privacy concerns to handling downtime, and how it felt returning to their families and jobs after their campaigns.

“It took me a while to turn my phone notifications back on, just to ease back into the world,” Mason said. “I learned to be present and have more gratitude for the little things, like getting to feel the humidity, especially after 45 days without weather.”

The three NASA panelists encouraged audience members to submit a research proposal or even consider applying to participate in a future analog.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Dozens of Student Teams Worldwide to Compete in NASA Rover Challenge

NASA has selected 72 student teams to begin an engineering design challenge to build human-powered rovers that will compete next April at the U.S. Space & Rocket Center in Huntsville, near the agency’s Marshall Space Flight Center.

Celebrating its 30th anniversary in 2024, the Human Exploration Rover Challenge tasks high school, college, and university students to design, build, and test lightweight, human-powered rovers on an obstacle course simulating lunar and Martian terrain, all while completing mission-focused science tasks.

Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA
Students from Alabama A&M University near Huntsville, Alabama, pilot their vehicle through the obstacle course at the U.S. Space & Rocket Center during NASA’s Human Exploration Rover Challenge event on April 22, 2023. Credits: NASA
NASA

Participating teams represent 42 colleges and universities and 30 high schools from 24 states, the District of Columbia, Puerto Rico, and 13 other nations from around the world. NASA’s handbook has complete proposal guidelines and task challenges.

“Throughout this authentic learning challenge, NASA encourages students to improve their understanding of collaboration, inquiry, and problem-solving strategies,” said Vemitra Alexander, rover challenge activity lead, Office of STEM Engagement at NASA Marshall. “Improving these critical real-world skills will benefit our students throughout their academic and professional careers.”

Throughout the nine-month challenge, students will complete design and safety reviews to mirror the process used by NASA engineers and scientists. The agency also incorporates vehicle weight and size requirements encouraging students to consider lightweight construction materials and stowage efficiency to be replicate similar payload restrictions of NASA launch operations.

Teams earn points throughout the year by successfully completing design reviews and fabricating a rover capable of meeting all criteria while completing course obstacles and mission tasks. The teams with the highest number of points accumulated throughout the project year will win their respective divisions. The challenge will conclude with an event April 19 and April 20, 2024, at the U.S. Rocket and Space Center.

This competition is one of nine Artemis Student Challenges and reflects the goals of NASA’s Artemis program, which includes landing the first woman and first person of color on the Moon. It is managed by NASA’s Southeast Regional Office of STEM Engagement at Marshall. NASA uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.

› Back to Top

NASA Prepares Artemis II Moon Rocket Core Stage for Final Assembly Phase

By Megan Carter

NASA and its partners have fully secured the four RS-25 engines onto the core stage of the agency’s SLS (Space Launch System) rocket for the Artemis II flight test. The core stage, and its engines, is the backbone of the SLS mega rocket that will power the flight test, the first crewed mission to the Moon under Artemis.

Engineers have begun final integration testing at NASA’s Michoud Assembly Facility, in preparation for acceptance ahead of shipment of the stage to Kennedy Space Center in the coming months.

These photos and videos show how technicians at NASA’s Michoud Assembly Facility in New Orleans installed the third and fourth RS-25 engines onto the core stage for the agency’s SLS (Space Launch System) rocket that will help power NASA’s first crewed Artemis mission to the Moon.   Technicians added the first engine to the SLS core stage Sept. 11. The second engine was installed onto the stage Sept. 15 with the third and fourth engines following Sept. 19 and Sept. 20. Engineers consider the engines to be “soft” mated to the rocket stage. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, will now focus efforts on the complex tax of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure.   NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.
These photos and videos show how technicians at NASA’s Michoud Assembly Facility in New Orleans installed the third and fourth RS-25 engines onto the core stage for the agency’s SLS (Space Launch System) rocket that will help power NASA’s first crewed Artemis mission to the Moon. Technicians added the first engine to the SLS core stage Sept. 11. The second engine was installed onto the stage Sept. 15 with the third and fourth engines following Sept. 19 and Sept. 20. Engineers consider the engines to be “soft” mated to the rocket stage. Technicians with NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, will now focus efforts on the complex tax of fully securing the engines to the stage and integrating the propulsion and electrical systems within the structure. NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.
Credits: NASA

The 212-foot-tall core stage includes two massive liquid propellant tanks and four RS-25 engines at its base. For Artemis II, the core stage and its engines act as the powerhouse of the rocket, providing more than two million pounds of thrust for the first eight minutes of flight to send the crew of four astronauts inside NASA’s Orion spacecraft on an approximately 10-day mission around the Moon.

NASA, Aerojet Rocketdyne, an L3Harris Technologies company and the RS-25 engines lead contractor, along with Boeing, the core stage lead contractor, secured the engines to the maze of propulsion and avionics systems within the core stage Oct. 6. In the coming weeks, engineers will perform testing on the entire stage and its avionics and electrical systems, which act as the “brains” of the rocket to help control it during flight.

Once testing of the stage is complete and the hardware passes its acceptance review, the core stage will be readied for shipping to Kennedy via the agency’s Pegasus barge, based at Michoud.

As teams prepare the core stage for Artemis II, rocket hardware is also under construction on our factory floor for Artemis III, IV, and V that will help send the future Artemis astronauts to the lunar South Pole.

The engines were first soft mated one by one onto the stage beginning in early September. The last RS-25 engine was structurally installed onto the stage Sept. 20. Installing the four engines is a multi-step, collaborative process for NASA, Boeing, and Aerojet Rocketdyne.

Following the initial structural connections of the individual engines, securing and outfitting all four engines to the stage is the lengthiest part of the engine assembly process and includes securing the thrust vector control actuators, ancillary interfaces, and remaining bolts before multiple tests and checkouts.

All major hardware elements for the SLS rocket that will launch Artemis II are either complete or in progress. The major components for the rocket’s two solid rocket boosters are at Kennedy. The rocket’s two adapters, produced at NASA’s Marshall Space Flight Center, along with the rocket’s upper stage, currently at lead contractor United Launch Alliance’s facility in Florida near Kennedy, will be prepared for shipment in the spring. Marshall manages the SLS Program.

NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

Carter, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

NASA Conducts 1st Hot Fire of New RS-25 Certification Test Series

NASA conducted the first hot fire of a new RS-25 test series Oct. 17, beginning the final round of certification testing ahead of production of an updated set of the engines for the SLS (Space Launch System) rocket. The engines will help power future Artemis missions to the Moon and beyond.

A full duration test of the RS-25 certification engine was conducted at NASA's Stennis Space Center on October 17, 2023.
NASA completed a full duration, 550-second hot fire of the RS-25 certification engine Oct. 17, beginning a critical test series to support future SLS (Space Launch System) missions to deep space as NASA explores the secrets of the universe for the benefit of all.
NASA / Danny Nowlin

Operators fired the RS-25 engine for more than nine minutes (550 seconds), longer than the 500 seconds engines must fire during an actual mission, on the Fred Haise Test Stand at NASA’s Stennis Space Center. Operators also fired the engine up to the 111% power level needed during an SLS launch. The hot fire marked the first in a series of 12 tests scheduled to stretch into 2024. The tests are a key step for lead SLS engines contractor Aerojet Rocketdyne, an L3Harris Technologies company, to produce engines that will help power the SLS rocket, beginning with Artemis V.

The test series will collect data on the performance of several new key engine components, including a nozzle, hydraulic actuators, flex ducts, and turbopumps. The components match design features of those used during the initial certification test series completed at the south Mississippi site in June. Aerojet Rocketdyne is using advanced manufacturing techniques, such as 3D printing, to reduce the cost and time needed to build the new engines. Four RS-25 engines help power SLS at launch, including on its Artemis missions to the Moon.

Through Artemis, NASA is returning humans, including the first woman and the first person of color, to the Moon to explore the lunar surface and prepare for flights to Mars. SLS is the only rocket capable of sending the agency’s Orion spacecraft, astronauts, and supplies to the Moon in a single mission.

› Back to Top

Psyche Launch Highlighted on ‘This Week at NASA’

NASA’s Psyche launched aboard a SpaceX Falcon Heavy from the agency’s Kennedy Space Center on Oct. 13. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online.

Psyche is on its way to a metal-rich asteroid of the same name. The mission could teach us more about how rocky planets like Earth formed.

Managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center, Psyche is the 14th planetary exploration mission in NASA’s Discovery program, which is also managed for the agency by Marshall. Read more about Marshall’s role in Psyche.

View this and previous episodes at “This Week @NASA” on NASA’s YouTube page.

› Back to Top

Lucy Spacecraft Continues Approach to Asteroid Dinkinesh

Since NASA’s Lucy spacecraft first imaged the asteroid Dinkinesh on Sept. 3, Lucy has traveled over 33 million miles and is now 4.7 million miles away from the small asteroid. However, as Dinkinesh continues on its orbit around the Sun, Lucy still has another almost 16 million miles to travel to its meet-up with the asteroid on Nov. 1.


This data visualization overlays some of the images taken by the Lucy spacecraft’s L’LORRI from Sept. 3 to Oct. 3 on the Lucy trajectory (red) and the orbit of the asteroid Dinkinesh (gold). These images were taken as part of the optical navigation program in advance of the encounter on Nov. 1. The stars indicate the locations at closest approach on Nov. 1. (NASA/SwRI/APL)

Over the last month, the spacecraft team has seen the target asteroid generally brightening as Lucy approaches it and has also seen a subtle brightness variation consistent with the previously observed 52.7-hour rotation period. Since Lucy first observed the asteroid on Sept. 3, the team has used images collected by the spacecraft’s high-resolution camera, L’LORRI, to refine their knowledge of the relative positions of the spacecraft and asteroid, optically navigating Lucy towards the encounter. Using this information, on Sept. 29 the spacecraft carried out a small trajectory correction maneuver, changing the spacecraft’s speed by just 6 cm/s (around 0.1 mph). This nudge is predicted to send the spacecraft on a path that will pass within 265 miles of the asteroid. In late October the team will have another opportunity to adjust the trajectory if necessary.             

On Oct. 6, the spacecraft passed behind the Sun as viewed from Earth, beginning a planned communications blackout. The spacecraft has continued to image the asteroid and will return these images to Earth once communications resume after the end of the solar conjunction period in mid-October.

Lucy’s principal investigator, Hal Levison, is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio, Texas. NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center manages the Discovery Program for the Science Mission Directorate at NASA Headquarters.

› Back to Top

Webb Detects Tiny Quartz Crystals in the Clouds of a Hot Gas Giant

Researchers using NASA’s James Webb Space Telescope have detected evidence for quartz nanocrystals in the high-altitude clouds of WASP-17 b, a hot Jupiter exoplanet 1,300 light-years from Earth. The detection, which was uniquely possible with MIRI (Webb’s Mid-Infrared Instrument), marks the first time that silica (SiO2) particles have been spotted in an exoplanet atmosphere.

“We were thrilled!” said David Grant, a researcher at the University of Bristol in the UK and first author on a paper published in the Astrophysical Journal Letters. “We knew from Hubble observations that there must be aerosols – tiny particles making up clouds or haze – in WASP-17 b’s atmosphere, but we didn’t expect them to be made of quartz.”

Illustration showing a portion of the disk of a cloudy planet set against the black background of space. About one-eighth of the planet is visible. It fills the lower right half of the frame, with the limb (the edge, or horizon) curving from the bottom left corner to the upper right corner. The planet is partially lit by a star that is off to the upper left, out of view. The planet is brightest along the limb (on the dayside), and grows dimmer toward the lower right corner (the nightside), becoming almost completely dark about halfway in. Wispy, light-tan-colored clouds are visible in the lit portion and there is a hazy blueish glow along the horizon. Several stars are sc attered in the background.
This artist concept shows what the exoplanet WASP-17 b could look like.
NASA, ESA, CSA, and R. Crawford (STScI)Science: Nikole Lewis (Cornell University), David Grant (University of Bristol), Hannah Wakeford (University of Bristol) Crawford (STScI)

Silicates (minerals rich in silicon and oxygen) make up the bulk of Earth and the Moon as well as other rocky objects in our solar system, and are extremely common across the galaxy. But the silicate grains previously detected in the atmospheres of exoplanets and brown dwarfs appear to be made of magnesium-rich silicates like olivine and pyroxene, not quartz alone – which is pure SiO2.

The result from this team, which also includes researchers from NASA’s Ames Research Center and NASA’s Goddard Space Flight Center, puts a new spin on our understanding of how exoplanet clouds form and evolve. “We fully expected to see magnesium silicates,” said co-author Hannah Wakeford, also from the University of Bristol. “But what we’re seeing instead are likely the building blocks of those, the tiny ‘seed’ particles needed to form the larger silicate grains we detect in cooler exoplanets and brown dwarfs.”

With a volume more than seven times that of Jupiter and a mass less than one-half Jupiter, WASP-17 b is one of the largest and puffiest known exoplanets. This, along with its short orbital period of just 3.7 Earth-days, makes the planet ideal for transmission spectroscopy : a technique that involves measuring the filtering and scattering effects of a planet’s atmosphere on starlight.

Webb observed the WASP-17 system for nearly 10 hours, collecting more than 1,275 brightness measurements of 5- to 12-micron mid-infrared light as the planet crossed its star. By subtracting the brightness of individual wavelengths of light that reached the telescope when the planet was in front of the star from those of the star on its own, the team was able to calculate the amount of each wavelength blocked by the planet’s atmosphere.

What emerged was an unexpected “bump” at 8.6 microns, a feature that would not be expected if the clouds were made of magnesium silicates or other possible high temperature aerosols like aluminum oxide, but which makes perfect sense if they are made of quartz.

While these crystals are probably similar in shape to the pointy hexagonal prisms found in geodes and gem shops on Earth, each one is only about 10 nanometers across – one-millionth of one centimeter.

“Hubble data actually played a key role in constraining the size of these particles,” explained co-author Nikole Lewis of Cornell University, who leads the Webb GTO (Guaranteed Time Observation) program designed to help build a three-dimensional view of a hot Jupiter atmosphere. “We know there is silica from Webb’s MIRI data alone, but we needed the visible and near-infrared observations from Hubble for context, to figure out how large the crystals are.”

Unlike mineral particles found in clouds on Earth, the quartz crystals detected in the clouds of WASP-17 b are not swept up from a rocky surface. Instead, they originate in the atmosphere itself. “WASP-17 b is extremely hot – around 1,500 degrees Celsius (2,700°F) – and the pressure where they form high in the atmosphere is only about one-thousandth of what we experience on Earth’s surface,” explained Grant. “In these conditions, solid crystals can form directly from gas, without going through a liquid phase first.”

Understanding what the clouds are made of is crucial for understanding the planet as a whole. Hot Jupiters like WASP-17 b are made primarily of hydrogen and helium, with small amounts of other gases like water vapor (H2O) and carbon dioxide (CO2). “If we only consider the oxygen that is in these gases, and neglect to include all of the oxygen locked up in minerals like quartz (SiO2), we will significantly underestimate the total abundance,” explained Wakeford. “These beautiful silica crystals tell us about the inventory of different materials and how they all come together to shape the environment of this planet.”

Exactly how much quartz there is, and how pervasive the clouds are, is hard to determine. “The clouds are likely present along the day/night transition (the terminator), which is the region that our observations probe,” said Grant. Given that the planet is tidally locked with a very hot day side and cooler night side, it is likely that the clouds circulate around the planet, but vaporize when they reach the hotter day side. “The winds could be moving these tiny glassy particles around at thousands of miles per hour.”

WASP-17 b is one of three planets targeted by the JWST-Telescope Scientist Team’s DREAMS (Deep Reconnaissance of Exoplanet Atmospheres using Multi-instrument Spectroscopy) investigations, which are designed to gather a comprehensive set of observations of one representative from each key class of exoplanets: a hot Jupiter, a warm Neptune, and a temperate rocky planet. The MIRI observations of hot Jupiter WASP-17 b were made as part of GTO program 1353.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center.

› Back to Top

Powered by WPeMatico

Get The Details…
Lee Mohon